InternLM/lmdeploy项目中的模型推理停止问题分析与解决方案
问题现象描述
在使用InternLM/lmdeploy项目进行模型推理时,用户报告了两种典型的问题表现:
-
xtuner chat调用原始模型或微调后模型:模型会持续生成内容而不会自动停止,表现为不断重复相似的回复内容。例如在调用internlm2_5-7b-chat模型时,模型会不断重复"非常感谢您的回复和祝福"这样的内容。
-
lmdeploy chat调用未量化的微调模型:同样出现无法停止生成的问题,表现为重复输出相同的咨询回复内容。而量化后的模型则表现正常。
问题根本原因分析
经过技术分析,这些问题主要由以下几个因素导致:
-
对话模板配置不当:lmdeploy在加载模型时需要正确的对话模板配置。对于InternLM2系列的模型,必须指定
--chat-template internlm2参数,否则系统无法正确识别对话的开始和结束标记。 -
注意力掩码设置问题:从日志中可以看到"The attention mask is not set"的警告,这表明模型在推理时未能正确设置注意力掩码,导致无法准确判断生成何时应该停止。
-
微调后模型配置缺失:用户自行微调合并的模型可能缺少必要的配置文件,特别是对话模板相关的配置,导致推理引擎无法正确处理对话流程。
解决方案与最佳实践
针对上述问题,我们推荐以下解决方案:
-
正确指定对话模板: 对于InternLM2系列的模型,在使用lmdeploy chat命令时必须显式指定对话模板:
lmdeploy chat /path/to/model --chat-template internlm2 -
微调后模型的处理:
- 确保微调后的模型保留了原始模型的对话模板配置
- 如果使用自定义数据集进行微调,需要检查并可能调整对话模板设置
- 建议在微调前备份原始模型的配置文件
-
量化模型的优势: 从用户反馈来看,量化后的模型表现正常,这表明:
- 量化过程可能自动修正了某些配置问题
- 量化模型通常具有更稳定的推理表现
- 建议对微调后的模型也进行量化处理
技术深入解析
-
对话模板的重要性: 对话模板定义了模型如何组织对话历史,包括系统提示、用户输入和模型回复的格式。正确的模板设置对于:
- 控制生成长度
- 识别对话轮次
- 确保生成内容格式正确 都至关重要。
-
注意力掩码的作用: 注意力掩码帮助模型区分有效内容与填充内容。当pad token与eos token相同时,必须显式设置注意力掩码,否则模型无法准确判断生成何时应该停止。
-
微调带来的挑战: 模型微调可能改变原始的行为模式,特别是:
- 对话结束的识别模式
- 重复内容的抑制机制
- 生成长度的控制逻辑 需要特别注意这些方面的验证。
实践建议
-
模型验证流程:
- 在部署前,使用不同长度的输入测试模型停止行为
- 检查生成内容是否符合预期格式
- 验证多轮对话的连贯性
-
配置检查清单:
- 确认模型目录包含完整的配置文件
- 检查tokenizer配置是否正确
- 验证对话模板设置是否匹配模型系列
-
性能与稳定性权衡:
- 量化模型通常表现更稳定
- 原始模型可能需要更多调优
- 根据应用场景选择合适的部署形式
通过以上分析和解决方案,开发者可以更好地处理InternLM/lmdeploy项目中的模型推理停止问题,确保生成式对话系统的稳定运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00