InternLM/lmdeploy项目中的模型推理停止问题分析与解决方案
问题现象描述
在使用InternLM/lmdeploy项目进行模型推理时,用户报告了两种典型的问题表现:
- 
xtuner chat调用原始模型或微调后模型:模型会持续生成内容而不会自动停止,表现为不断重复相似的回复内容。例如在调用internlm2_5-7b-chat模型时,模型会不断重复"非常感谢您的回复和祝福"这样的内容。
 - 
lmdeploy chat调用未量化的微调模型:同样出现无法停止生成的问题,表现为重复输出相同的咨询回复内容。而量化后的模型则表现正常。
 
问题根本原因分析
经过技术分析,这些问题主要由以下几个因素导致:
- 
对话模板配置不当:lmdeploy在加载模型时需要正确的对话模板配置。对于InternLM2系列的模型,必须指定
--chat-template internlm2参数,否则系统无法正确识别对话的开始和结束标记。 - 
注意力掩码设置问题:从日志中可以看到"The attention mask is not set"的警告,这表明模型在推理时未能正确设置注意力掩码,导致无法准确判断生成何时应该停止。
 - 
微调后模型配置缺失:用户自行微调合并的模型可能缺少必要的配置文件,特别是对话模板相关的配置,导致推理引擎无法正确处理对话流程。
 
解决方案与最佳实践
针对上述问题,我们推荐以下解决方案:
- 
正确指定对话模板: 对于InternLM2系列的模型,在使用lmdeploy chat命令时必须显式指定对话模板:
lmdeploy chat /path/to/model --chat-template internlm2 - 
微调后模型的处理:
- 确保微调后的模型保留了原始模型的对话模板配置
 - 如果使用自定义数据集进行微调,需要检查并可能调整对话模板设置
 - 建议在微调前备份原始模型的配置文件
 
 - 
量化模型的优势: 从用户反馈来看,量化后的模型表现正常,这表明:
- 量化过程可能自动修正了某些配置问题
 - 量化模型通常具有更稳定的推理表现
 - 建议对微调后的模型也进行量化处理
 
 
技术深入解析
- 
对话模板的重要性: 对话模板定义了模型如何组织对话历史,包括系统提示、用户输入和模型回复的格式。正确的模板设置对于:
- 控制生成长度
 - 识别对话轮次
 - 确保生成内容格式正确 都至关重要。
 
 - 
注意力掩码的作用: 注意力掩码帮助模型区分有效内容与填充内容。当pad token与eos token相同时,必须显式设置注意力掩码,否则模型无法准确判断生成何时应该停止。
 - 
微调带来的挑战: 模型微调可能改变原始的行为模式,特别是:
- 对话结束的识别模式
 - 重复内容的抑制机制
 - 生成长度的控制逻辑 需要特别注意这些方面的验证。
 
 
实践建议
- 
模型验证流程:
- 在部署前,使用不同长度的输入测试模型停止行为
 - 检查生成内容是否符合预期格式
 - 验证多轮对话的连贯性
 
 - 
配置检查清单:
- 确认模型目录包含完整的配置文件
 - 检查tokenizer配置是否正确
 - 验证对话模板设置是否匹配模型系列
 
 - 
性能与稳定性权衡:
- 量化模型通常表现更稳定
 - 原始模型可能需要更多调优
 - 根据应用场景选择合适的部署形式
 
 
通过以上分析和解决方案,开发者可以更好地处理InternLM/lmdeploy项目中的模型推理停止问题,确保生成式对话系统的稳定运行。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00