推荐项目:MonoDETR——深度引导的单目3D物体检测Transformer
2024-05-21 00:02:35作者:贡沫苏Truman
🚀 首款基于DETR的无额外深度监督单目3D检测模型 MonoDETR 已经发布!🎉 它在不依赖特定深度信息、锚点或非极大值抑制的情况下,利用深度引导的Transformer实现了场景级几何感知。
项目简介
MonoDETR 是一种创新的方法,它将Transformer架构应用于单镜头3D对象检测任务中,每个对象能够自适应地从图像中的深度信息丰富的区域估计其3D属性,不再局限于中心周围的特征。此项目是首次尝试将DETR框架应用于这一领域,且无需额外的深度监督。
技术解析
MonoDETR的关键在于它的深度引导机制,这种机制使得标准的Transformer能够理解和利用图像的深度信息,进行更精确的3D对象定位和尺寸估计。通过在Transformer内部集成深度线索,模型可以学习到更为丰富的几何表示,从而提高单目3D检测的性能。
应用场景
这个项目特别适合那些需要实时或低资源消耗的单目3D物体检测应用,如自动驾驶、无人机导航、智能安防等领域。例如,在自动驾驶汽车中,MonoDETR可以有效地帮助车辆理解周围环境,并及时识别出其他道路使用者的位置和距离。
项目特点
- 无额外深度监督:MonoDETR不需要额外的深度标签,仅依赖于普通的彩色图像就能完成3D检测。
- 无锚点设计:摒弃了传统的基于锚点的框架,简化了模型结构并降低了计算复杂度。
- Transformer架构:采用DETR的Transformer架构,实现端到端的学习,提高了模型的泛化能力和推理效率。
- 高度灵活:能动态地从图像的不同区域获取深度信息,适应性强。
结果展示
项目在权威的KITTI数据集上进行了验证,表现出稳定的性能。最新的结果在不同难度级别的AP3D上有显著提升,体现了模型的优秀效果(具体结果见项目README)。
要开始使用MonoDETR,只需按照提供的安装步骤,包括克隆项目、创建conda环境、安装依赖项、编译变形注意力操作,并准备好数据集即可开始训练和测试。
联系作者
如有任何关于此项目的问题,欢迎联系zhangrenrui@pjlab.org.cn。
不要忘记引用该项目的论文:
@article{zhang2022monodetr,
title={MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection},
author={Zhang, Renrui and Qiu, Han and Wang, Tai and Xu, Xuanzhuo and Guo, Ziyu and Qiao, Yu and Gao, Peng and Li, Hongsheng},
journal={ICCV 2023},
year={2022}
}
立即加入 MonoDETR 的社区,一起探索深度引导的单目3D物体检测新可能吧!🚀
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44