推荐项目:MonoDETR——深度引导的单目3D物体检测Transformer
2024-05-21 00:02:35作者:贡沫苏Truman
🚀 首款基于DETR的无额外深度监督单目3D检测模型 MonoDETR 已经发布!🎉 它在不依赖特定深度信息、锚点或非极大值抑制的情况下,利用深度引导的Transformer实现了场景级几何感知。

项目简介
MonoDETR 是一种创新的方法,它将Transformer架构应用于单镜头3D对象检测任务中,每个对象能够自适应地从图像中的深度信息丰富的区域估计其3D属性,不再局限于中心周围的特征。此项目是首次尝试将DETR框架应用于这一领域,且无需额外的深度监督。
技术解析
MonoDETR的关键在于它的深度引导机制,这种机制使得标准的Transformer能够理解和利用图像的深度信息,进行更精确的3D对象定位和尺寸估计。通过在Transformer内部集成深度线索,模型可以学习到更为丰富的几何表示,从而提高单目3D检测的性能。
应用场景
这个项目特别适合那些需要实时或低资源消耗的单目3D物体检测应用,如自动驾驶、无人机导航、智能安防等领域。例如,在自动驾驶汽车中,MonoDETR可以有效地帮助车辆理解周围环境,并及时识别出其他道路使用者的位置和距离。
项目特点
- 无额外深度监督:MonoDETR不需要额外的深度标签,仅依赖于普通的彩色图像就能完成3D检测。
- 无锚点设计:摒弃了传统的基于锚点的框架,简化了模型结构并降低了计算复杂度。
- Transformer架构:采用DETR的Transformer架构,实现端到端的学习,提高了模型的泛化能力和推理效率。
- 高度灵活:能动态地从图像的不同区域获取深度信息,适应性强。
结果展示
项目在权威的KITTI数据集上进行了验证,表现出稳定的性能。最新的结果在不同难度级别的AP3D上有显著提升,体现了模型的优秀效果(具体结果见项目README)。
要开始使用MonoDETR,只需按照提供的安装步骤,包括克隆项目、创建conda环境、安装依赖项、编译变形注意力操作,并准备好数据集即可开始训练和测试。
联系作者
如有任何关于此项目的问题,欢迎联系zhangrenrui@pjlab.org.cn。
不要忘记引用该项目的论文:
@article{zhang2022monodetr,
title={MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection},
author={Zhang, Renrui and Qiu, Han and Wang, Tai and Xu, Xuanzhuo and Guo, Ziyu and Qiao, Yu and Gao, Peng and Li, Hongsheng},
journal={ICCV 2023},
year={2022}
}
立即加入 MonoDETR 的社区,一起探索深度引导的单目3D物体检测新可能吧!🚀
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136