使用BrewPOTS项目中的PyPOTS库实现时间序列聚类分析
2025-06-19 07:40:54作者:管翌锬
概述
时间序列聚类是数据分析中的重要任务,能够帮助我们发现相似模式的数据组。本文将介绍如何使用BrewPOTS项目中的PyPOTS库实现时间序列聚类分析,重点演示CRLI和VaDER两种先进的聚类算法。
环境准备
在开始之前,我们需要确保已安装PyPOTS库及其依赖项。建议使用Python 3.7或更高版本,并安装CUDA以支持GPU加速。
数据集准备
我们将使用PhysioNet-2012数据集,这是一个医疗时间序列数据集,包含ICU患者的生理指标记录。
from pypots.data.generating import gene_physionet2012
from pypots.utils.random import set_random_seed
# 设置随机种子保证结果可复现
set_random_seed(16)
# 加载PhysioNet-2012数据集
physionet2012_dataset = gene_physionet2012(artificially_missing_rate=0)
数据集加载后会自动进行预处理,包括数据分割、归一化等步骤。我们可以检查数据集结构:
print(physionet2012_dataset.keys())
数据准备
将数据集分为训练集和测试集:
import numpy as np
# 合并训练集和验证集
dataset_for_training = {
"X": np.concatenate([physionet2012_dataset['train_X'], physionet2012_dataset['val_X']], axis=0),
"y": np.concatenate([physionet2012_dataset['train_y'], physionet2012_dataset['val_y']], axis=0),
}
# 测试集
dataset_for_testing = {
"X": physionet2012_dataset['test_X'],
"y": physionet2012_dataset['test_y'],
}
CRLI聚类模型
CRLI(Clustering Representation Learning via Imputation)是一种基于生成对抗网络(GAN)的聚类方法,能够同时处理缺失值和进行聚类。
模型初始化
from pypots.optim import Adam
from pypots.clustering import CRLI
crli = CRLI(
n_steps=physionet2012_dataset["n_steps"],
n_features=physionet2012_dataset["n_features"],
n_clusters=physionet2012_dataset["n_classes"],
n_generator_layers=2,
rnn_hidden_size=256,
rnn_cell_type="GRU",
decoder_fcn_output_dims=[256, 128],
batch_size=32,
epochs=10,
patience=3,
G_optimizer=Adam(lr=1e-3),
D_optimizer=Adam(lr=1e-3),
num_workers=0,
device=None,
saving_path="../tutorial_results/clustering/crli",
model_saving_strategy="best",
)
模型训练
crli.fit(train_set=dataset_for_training)
模型评估
# 预测
crli_results = crli.predict(dataset_for_testing)
crli_prediction = crli_results["clustering"]
# 评估指标
from pypots.utils.metrics import calc_rand_index, calc_cluster_purity
RI = calc_rand_index(crli_prediction, dataset_for_testing["y"])
CP = calc_cluster_purity(crli_prediction, dataset_for_testing["y"])
print("测试聚类指标:")
print(f"兰德指数(RI): {RI}")
print(f"聚类纯度(CP): {CP}")
VaDER聚类模型
VaDER(Variational Deep Embedding with Recurrence)是一种基于变分自编码器(VAE)的聚类方法,特别适合时间序列数据。
模型初始化
from pypots.clustering import VaDER
vader = VaDER(
n_steps=physionet2012_dataset["n_steps"],
n_features=physionet2012_dataset["n_features"],
n_clusters=physionet2012_dataset["n_classes"],
rnn_hidden_size=128,
d_mu_stddev=2,
pretrain_epochs=20,
batch_size=32,
epochs=10,
patience=3,
optimizer=Adam(lr=1e-3),
num_workers=0,
device=None,
saving_path="../tutorial_results/clustering/vader",
model_saving_strategy="best",
)
模型训练
vader.fit(train_set=dataset_for_training)
模型评估
# 预测
vader_results = vader.predict(dataset_for_testing)
vader_prediction = vader_results["clustering"]
# 评估指标
RI = calc_rand_index(vader_prediction, dataset_for_testing["y"])
CP = calc_cluster_purity(vader_prediction, dataset_for_testing["y"])
print("测试聚类指标:")
print(f"兰德指数(RI): {RI}")
print(f"聚类纯度(CP): {CP}")
结果分析与比较
从实验结果可以看出:
- VaDER模型在兰德指数(RI)上表现更好,说明它能更准确地识别数据点之间的相似性关系
- 两种模型在聚类纯度(CP)上表现相当
- CRLI模型训练过程中需要同时优化生成器和判别器,计算开销更大
- VaDER模型利用了变分推断,对数据分布有更好的建模能力
实际应用建议
- 对于医疗时间序列数据,VaDER通常是更好的选择
- 如果数据有大量缺失值,CRLI可能更有优势
- 可以尝试调整以下超参数优化性能:
- RNN隐藏层大小
- 学习率
- 批次大小
- 训练轮数
总结
本文通过BrewPOTS项目中的PyPOTS库演示了两种先进的时间序列聚类方法。PyPOTS提供了简洁易用的API,使得复杂的时间序列分析任务变得简单。读者可以根据自己的数据特点选择合适的算法,并通过调整超参数进一步优化性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
469
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
716
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
208
83
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1