LMOps项目中医学知识探测测试的数据预处理方法解析
2025-06-17 00:11:39作者:冯梦姬Eddie
在LMOps项目"Adapting LLM via Reading Comprehension"的研究工作中,医学知识探测测试(Knowledge Probing Test)是一个重要的评估环节。本文将从技术实现角度详细解析该测试的数据预处理方法,帮助研究人员更好地理解和复现这一评估过程。
数据来源与预处理目标
医学知识探测测试使用了MedMCQA数据集作为基础数据源。该数据集包含医学领域的多项选择题,涵盖21个医学专业科目。预处理的核心目标是:从原始训练集中筛选出适合知识探测的标准化问题,并按科目进行分类存储。
关键预处理步骤
-
数据过滤标准:
- 排除多选题类型(choice_type为"multi"的条目)
- 排除包含特定疑问词的问题(如which、what、when等)
- 排除包含特殊符号的问题(如__、:、?、-等)
-
科目分类处理:
- 将过滤后的数据按照21个医学专业科目进行分类
- 每个科目单独保存为JSONL格式文件
- 支持设置随机种子以保证数据顺序的可复现性
技术实现细节
预处理脚本采用了Python语言实现,主要使用了json_lines和jsonlines库处理JSONL格式数据。关键函数包括:
read_jsonl()
:读取原始JSONL格式的训练数据filter()
:实现上述过滤逻辑的判断函数save_jsonl()
:将处理后的数据按科目保存为新的JSONL文件
脚本通过命令行参数接收输入文件路径、输出目录和随机种子等配置,具有良好的灵活性。
评估指标说明
在知识探测测试中,评估指标采用的是21个科目上的平均准确率。需要注意的是:
- 不同实现可能产生绝对分数上的微小差异
- 研究重点应关注通用LLM与经过DAPT训练的LLM之间的相对性能差异
- 科目平衡性对最终平均结果有重要影响
实践建议
对于希望复现或改进此项研究的开发者,建议:
- 使用官方提供的预处理脚本确保数据一致性
- 关注科目分布情况,避免评估偏差
- 理解过滤逻辑的合理性,必要时可调整以适应特定需求
- 记录完整的预处理参数以便结果复现
通过规范化的数据预处理流程,研究者可以更准确地评估语言模型在医学专业领域的知识掌握程度,为后续的领域适应训练提供可靠基准。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0335- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58