LMOps项目中医学知识探测测试的数据预处理方法解析
2025-06-17 14:52:07作者:冯梦姬Eddie
在LMOps项目"Adapting LLM via Reading Comprehension"的研究工作中,医学知识探测测试(Knowledge Probing Test)是一个重要的评估环节。本文将从技术实现角度详细解析该测试的数据预处理方法,帮助研究人员更好地理解和复现这一评估过程。
数据来源与预处理目标
医学知识探测测试使用了MedMCQA数据集作为基础数据源。该数据集包含医学领域的多项选择题,涵盖21个医学专业科目。预处理的核心目标是:从原始训练集中筛选出适合知识探测的标准化问题,并按科目进行分类存储。
关键预处理步骤
-
数据过滤标准:
- 排除多选题类型(choice_type为"multi"的条目)
- 排除包含特定疑问词的问题(如which、what、when等)
- 排除包含特殊符号的问题(如__、:、?、-等)
-
科目分类处理:
- 将过滤后的数据按照21个医学专业科目进行分类
- 每个科目单独保存为JSONL格式文件
- 支持设置随机种子以保证数据顺序的可复现性
技术实现细节
预处理脚本采用了Python语言实现,主要使用了json_lines和jsonlines库处理JSONL格式数据。关键函数包括:
read_jsonl()
:读取原始JSONL格式的训练数据filter()
:实现上述过滤逻辑的判断函数save_jsonl()
:将处理后的数据按科目保存为新的JSONL文件
脚本通过命令行参数接收输入文件路径、输出目录和随机种子等配置,具有良好的灵活性。
评估指标说明
在知识探测测试中,评估指标采用的是21个科目上的平均准确率。需要注意的是:
- 不同实现可能产生绝对分数上的微小差异
- 研究重点应关注通用LLM与经过DAPT训练的LLM之间的相对性能差异
- 科目平衡性对最终平均结果有重要影响
实践建议
对于希望复现或改进此项研究的开发者,建议:
- 使用官方提供的预处理脚本确保数据一致性
- 关注科目分布情况,避免评估偏差
- 理解过滤逻辑的合理性,必要时可调整以适应特定需求
- 记录完整的预处理参数以便结果复现
通过规范化的数据预处理流程,研究者可以更准确地评估语言模型在医学专业领域的知识掌握程度,为后续的领域适应训练提供可靠基准。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0112AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
216
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
981
580

Ascend Extension for PyTorch
Python
66
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
557
87

React Native鸿蒙化仓库
JavaScript
210
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
195

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399