yfinance库中requests.cookies.update()属性错误分析与解决方案
问题背景
在使用yfinance库进行金融数据查询时,当尝试获取不存在的股票代码信息时,系统会抛出AttributeError: module 'requests.cookies' has no attribute 'update'异常。这个错误发生在yfinance库内部处理HTTP请求和cookie管理的过程中。
技术分析
错误根源
该错误的核心问题在于yfinance库的cookie管理机制。当查询一个不存在的股票代码时,Yahoo Finance API会返回404状态码,此时yfinance库会尝试切换cookie策略(从basic模式切换到csrf模式)。在这个过程中,库内部错误地将requests模块本身而非session对象传递给cookie更新函数。
深层原因
-
cookie策略切换机制:yfinance设计了两种cookie获取策略(basic和csrf),当basic策略失败时会自动切换到csrf策略。
-
对象传递错误:在utils.py文件中,当session参数为None时,错误地将requests模块而非session对象传递给后续处理函数。
-
cookie更新逻辑:在
_load_session_cookies()方法中,尝试直接调用requests.cookies.update(),而实际上应该调用的是session对象的cookies属性的update方法。
解决方案
修复方案
-
正确传递session对象:确保在utils.py中传递的是有效的session对象而非requests模块本身。
-
cookie更新方式修正:修改
_load_session_cookies()方法,确保它操作的是session.cookies而非requests.cookies。 -
错误处理增强:在cookie策略切换过程中添加更健壮的错误处理机制。
实现细节
修复后的代码应该:
- 在创建session时正确初始化cookies属性
- 确保所有cookie操作都基于session对象而非全局requests模块
- 添加适当的null检查和安全防护
影响范围
该问题主要影响以下场景:
- 查询不存在的股票代码时
- 使用ISIN而非股票代码进行查询时
- 在cookie策略需要切换的情况下
最佳实践建议
对于使用yfinance库的开发者,建议:
- 添加异常处理:在使用Ticker.info时添加try-catch块处理可能的异常
try:
info = ticker.info
except AttributeError:
# 处理异常情况
-
预验证股票代码:在查询前先验证股票代码是否存在
-
使用最新版本:关注yfinance库的更新,及时升级到修复了该问题的版本
总结
这个cookie更新属性的错误揭示了yfinance库在HTTP会话管理和错误处理机制上的一些不足。通过分析我们可以看到,正确处理session对象和cookie管理对于金融数据API的稳定性至关重要。开发者在使用此类库时应当注意异常处理,特别是在处理可能不存在的金融产品代码时。
该问题的修复不仅解决了当前的AttributeError,也为库的稳定性和可靠性做出了贡献,特别是在处理边缘情况和错误场景时。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00