VideoMimic项目:从视频到机器人动作的完整处理流程指南
2025-07-08 19:34:04作者:明树来
概述
VideoMimic是一个强大的视频处理框架,能够将单摄像头拍摄的人类动作视频转换为适用于机器人模仿的运动数据。本指南将详细介绍该项目的完整处理流程,包括环境准备、视频预处理、环境重建、运动优化和机器人动作重定向等关键步骤。
环境准备
在开始处理前,需要配置两个独立的环境:
-
主处理环境(vm1rs):
- Python 3.12
- CUDA 12.4+
- 用于大部分处理流程
-
重建专用环境(vm1recon):
- Python 3.10
- CUDA 11.8
- 用于MegaSam、GeoCalib和NKSR网格化处理
快速开始
对于希望快速体验完整流程的用户,可以使用以下一键式命令:
# 首先提取视频帧
python utilities/extract_frames_from_video.py \
--video-path {视频名称}.{扩展名} \
--output-dir ./demo_data/input_images/{视频名称}/cam01 \
--start-frame 0 \
--end-frame 300
# 运行完整处理流程
./process_video.sh <视频名称> <起始帧> <结束帧> <子采样因子> g1 <人体高度>
示例:
./process_video.sh my_video 0 100 2 g1 1.8
视频拍摄建议
- 移动相机有助于获得更好的视差效果
- 尽量拍摄完整场景表面
- 保持人物在画面中心,大小适中
- 避免人物被遮挡
- 避免无纹理表面(如纯白墙面、强光室外等)
数据处理流程详解
阶段0:视频预处理
选项A:自动化预处理(推荐)
bash preprocess_human.sh <视频名称> <可视化标志>
选项B:手动分步预处理
-
人体检测与分割(SAM2)
python stage0_preprocessing/sam2_segmentation.py \ --video-dir ./demo_data/input_images/my_video/cam01 \ --output-dir ./demo_data/input_masks/my_video/cam01 \ --vis -
2D姿态估计(ViTPose)
python stage0_preprocessing/vitpose_2d_poses.py \ --video-dir ./demo_data/input_images/my_video/cam01 \ --bbox-dir ./demo_data/input_masks/my_video/cam01/json_data \ --output-dir ./demo_data/input_2d_poses/my_video/cam01 \ --vis -
3D人体网格估计(VIMO)
python stage0_preprocessing/vimo_3d_mesh.py \ --img-dir ./demo_data/input_images/my_video/cam01 \ --mask-dir ./demo_data/input_masks/my_video/cam01 \ --out-dir ./demo_data/input_3d_meshes/my_video/cam01 -
接触检测(BSTRO)
python stage0_preprocessing/bstro_contact_detection.py \ --video-dir ./demo_data/input_images/my_video/cam01 \ --bbox-dir ./demo_data/input_masks/my_video/cam01/json_data \ --output-dir ./demo_data/input_contacts/my_video/cam01 \ --feet-contact-ratio-thr 0.2 \ --contact-thr 0.95
阶段1:环境重建
选项A:MegaSam重建(高精度,约24GB+显存)
conda activate vm1recon
python stage1_reconstruction/megasam_reconstruction.py \
--out-dir ./demo_data/input_megasam \
--video-dir ./demo_data/input_images/my_video/cam01 \
--start-frame 0 \
--end-frame 100 \
--stride 1 \
--gsam2
选项B:Monst3r重建(适用于无纹理场景,约80GB+显存)
conda activate vm1rs
python stage1_reconstruction/monst3r_depth_prior_reconstruction.py \
--out-dir ./demo_data/input_align3r \
--video-dir ./demo_data/input_images/my_video/cam01 \
--start-frame 0 \
--end-frame 100 \
--stride 1 \
--gsam2
阶段2:MegaHunter优化
conda activate vm1rs
python stage2_optimization/megahunter_optimization.py \
--world-env-path ./demo_data/input_megasam/megasam_reconstruction_results_my_video_cam01_frame_0_100_subsample_1.h5 \
--bbox-dir ./demo_data/input_masks/my_video/cam01/json_data \
--pose2d-dir ./demo_data/input_2d_poses/my_video/cam01 \
--smpl-dir ./demo_data/input_3d_meshes/my_video/cam01 \
--out-dir ./demo_data/output_smpl_and_points
阶段3:后处理
完整后处理管道
conda activate vm1recon
python stage3_postprocessing/postprocessing_pipeline.py \
--megahunter-path ./demo_data/output_smpl_and_points/megahunter_megasam_reconstruction_results_my_video_cam01_frame_0_100_subsample_1.h5 \
--out-dir ./demo_data/output_calib_mesh/megahunter_megasam_reconstruction_results_my_video_cam01_frame_0_100_subsample_1 \
--conf-thr 0.0 \
--is-megasam \
--scale-bbox3d 1.5 \
--vis
阶段4:机器人动作重定向
conda activate vm1rs
python stage4_retargeting/robot_motion_retargeting.py \
--src-dir ./demo_data/output_calib_mesh/megahunter_megasam_reconstruction_results_my_video_cam01_frame_0_100_subsample_1/ \
--contact-dir ./demo_data/input_contacts/my_video/cam01 \
--vis
结果可视化
完整结果可视化
python visualization/complete_results_egoview_visualization.py \
--postprocessed-dir ./demo_data/output_calib_mesh/megahunter_megasam_reconstruction_results_my_video_cam01_frame_0_100_subsample_1 \
--robot-name g1 \
--bg-pc-downsample-factor 4 \
--is-megasam \
--save-ego-view
多人物处理
VideoMimic支持处理场景中的多个人物:
# 启用多人物处理
python stage0_preprocessing/vitpose_2d_poses.py ... --multihuman --top-k 3
python stage2_optimization/megahunter_optimization.py ... --multihuman --top-k 3
注意事项
- 建议输入帧数不超过300帧,否则可能导致GPU内存溢出
- 代码会自动将帧数填充到100的倍数以优化JAX JIT编译
- 动作重定向对成本权重非常敏感,可以尝试调整权重参数获得最佳效果
通过本指南,用户可以全面了解VideoMimic项目的处理流程,并根据实际需求选择合适的处理方式和参数配置。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896