GreptimeDB中的OpenTelemetry追踪数据模型设计
2025-06-10 15:35:02作者:柯茵沙
背景介绍
在现代可观测性体系中,分布式追踪系统扮演着关键角色。OpenTelemetry(OTel)作为云原生领域的事实标准,其追踪数据模型的设计直接影响着存储系统的架构。GreptimeDB作为一款新兴的时序数据库,正在完善对OTel追踪数据的原生支持。
OTel追踪数据结构分析
典型的OTel追踪数据包含以下核心元素:
- 基础信息:trace_id、span_id、parent_span_id构成完整的调用链关系
- 时间信息:精确到纳秒级的起止时间戳
- 元数据:包括服务名称、操作名称、状态码等
- 属性集合:键值对形式的上下文信息,如HTTP方法、数据库查询语句等
- 资源属性:描述产生数据的服务环境信息
- 事件和链接:记录span生命周期中的关键事件和跨trace关联
GreptimeDB的存储方案演进
初始设计方案
早期版本采用相对简单的扁平化存储策略:
- 将复合结构(如属性、事件)序列化为JSON字符串
- 提取关键标识字段作为主键
- 计算持续时间等衍生指标
- 缺乏对属性字段的高效查询支持
这种设计虽然实现简单,但在查询灵活性上存在明显不足,特别是无法高效过滤基于属性的数据。
优化后的存储模型
新版设计进行了重要改进:
1. 属性字段展开 将原本JSON格式的span_attributes、resource_attributes等展开为独立列,采用"span_attributes.db.system"这样的命名模式。这种设计带来两大优势:
- 支持直接基于属性值的条件过滤
- 允许为高频查询属性创建索引
2. 主键设计优化 选择(trace_id, span_id)作为复合主键,既保证记录唯一性,又符合追踪数据的自然组织方式。考虑到追踪数据的写入特征,表默认配置为append_only模式。
3. 索引策略调整 针对典型查询模式优化索引配置:
- parent_span_id索引:快速定位子span
- span_name索引:高效筛选特定类型操作
- 避免过度索引导致写入性能下降
4. 分区策略 采用基于trace_id的分区方案,相比传统时间分区更能适应大规模追踪数据的并行处理和查询。
架构演进与兼容性
考虑到存储引擎的快速迭代,设计上预留了演进空间:
-
版本化schema管理 通过pipeline版本(greptime_trace_v1/v2)明确标识schema,确保新旧版本兼容。
-
Jaeger协议适配层 定义"逻辑视图"转换层,将内部存储格式映射为Jaeger API所需的固定结构,保持协议兼容性。
实践意义
这种设计在保证写入性能的同时,显著提升了查询能力:
- 服务拓扑分析:通过parent_span_id快速构建调用关系
- 性能剖析:基于span_name和duration筛选慢请求
- 故障诊断:通过属性条件定位异常请求
- 资源关联:结合resource_attributes进行多维分析
对于采用GreptimeDB作为可观测性后端的用户,这种优化的数据模型将提供更强大的分析能力和更高效的查询体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868