【亲测免费】 win10 cuda11.8 和 torch2.0 安装指南
本仓库提供了详细的步骤和说明文档,帮助您在Windows 10操作系统环境下安装CUDA 11.8和PyTorch 2.0。这一组合特别适用于那些需要在GPU环境下进行深度学习开发的用户。下面的步骤基于博主“小崔的技术博客”在CSDN上的文章指导,确保您的系统配置正确无误。
安装CUDA 11.8
-
环境准备:首先,建议在一个干净的Conda环境中操作,避免版本冲突。您可以创建一个新的环境并选择Python 3.11作为解释器。
-
下载CUDA:访问NVIDIA的官方网站,从archive部分找到CUDA 11.8的安装程序,并下载适合您系统的版本。
-
安装过程:运行下载的安装程序,按照向导指示进行安装。安装完毕需重启计算机。
-
环境变量:安装后,系统会自动添加CUDA_PATH和CUDA_PATH_V11_8环境变量。确保这两个变量指向正确的CUDA安装目录。
-
验证CUDA:通过命令行输入
nvcc -V来验证CUDA是否安装成功。
安装CuDNN
-
访问NVIDIA cuDNN官网,根据CUDA 11.8版本下载对应的cuDNN库。
-
解压下载的文件,并将
bin,include,lib目录下的文件复制到CUDA的安装目录下的相应位置,例如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8。 -
更新PATH环境变量,包括cuDNN的相关目录。
安装PyTorch 2.0
-
使用pip安装:在确保CUDA和cuDNN已正确配置的环境中,运行以下pip命令来安装PyTorch 2.0与相应的torchvision和torchaudio:
pip3 install numpy --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118 -
验证安装:安装完成后,在Python环境下,可以通过导入torch并检查
.is_cuda属性来验证GPU支持是否正常工作。
通过遵循以上步骤,您应该能够在Windows 10平台上成功设置CUDA 11.8和PyTorch 2.0环境,为深度学习项目奠定坚实的基础。记得在实际操作中细心对照每一步骤,确保每个环节都顺利完成。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0114
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00