微软sample-app-aoai-chatGPT项目中的GitHub Actions安全加固实践
在开源项目的持续集成/持续部署(CI/CD)流程中,GitHub Actions作为自动化工作流工具被广泛使用。微软的sample-app-aoai-chatGPT项目近期针对其CI/CD流程中的安全风险进行了重要改进,特别是对第三方Actions的使用进行了安全加固。
背景与风险
在软件开发中,依赖第三方组件是常见做法,但也带来了潜在的安全风险。GitHub Actions允许使用社区维护的第三方action,这些action通常通过版本标签(如v1、v2等)来引用。然而,这些标签本质上是可变的(mutable),意味着同一个标签可能指向不同的代码内容。这种特性可能导致"依赖混淆"攻击,即攻击者可能通过接管某个action的发布权限,将恶意代码注入到看似相同的版本标签中。
安全最佳实践
针对这一风险,GitHub安全团队推荐将所有的第三方action固定到具体的commit哈希值。因为commit哈希是基于内容生成的唯一标识符,具有不可变性,可以确保每次运行工作流时都使用完全相同的代码版本。
在sample-app-aoai-chatGPT项目中,开发团队特别关注了tj-actions/changed-files这个第三方action的使用。原先该项目可能使用了版本标签引用方式,存在潜在安全风险。通过将其固定到具体的commit哈希,项目显著提高了CI/CD流程的安全性。
实施细节
安全加固的实施包括以下关键步骤:
- 识别工作流文件中所有使用的第三方action
- 将每个action的引用从版本标签改为完整的commit哈希
- 验证修改后的工作流仍能正常执行
- 考虑添加CodeQL扫描等额外安全措施
额外安全建议
除了固定action版本外,项目还可以考虑以下安全增强措施:
- 定期审查和更新依赖的第三方action
- 设置依赖更新提醒机制
- 限制工作流的权限范围
- 实施代码签名验证
- 建立完整的供应链安全策略
总结
微软sample-app-aoai-chatGPT项目的这一改进展示了现代软件开发中对供应链安全的重视。通过将第三方action固定到commit哈希,项目团队有效降低了潜在的供应链攻击风险,为其他开源项目树立了良好的安全实践榜样。这种安全意识的提升对于维护开源生态系统的整体健康至关重要。
对于开发者而言,理解并实施这类安全最佳实践应该成为构建可靠CI/CD流程的标准操作。随着软件供应链攻击的增多,采取预防性措施比事后补救要有效得多。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









