ErrorOr项目中的MediatR管道行为错误处理实践
2025-07-08 00:56:05作者:平淮齐Percy
概述
在使用ErrorOr库与MediatR结合开发应用程序时,开发者经常会遇到需要统一处理错误和异常的场景。本文将深入探讨如何在MediatR管道行为中优雅地处理错误,而不是简单地抛出异常。
问题背景
在典型的MediatR管道行为实现中,开发者通常会捕获各种异常并记录日志,然后重新抛出这些异常。然而,使用ErrorOr库时,我们更倾向于将错误作为返回值的一部分,而不是通过异常机制传播。
解决方案
ErrorOr库提供了与MediatR无缝集成的能力,允许我们将错误作为正常流程的一部分返回。以下是实现这一目标的几种方法:
1. 使用ErrorOr.From方法
在管道行为中,我们可以使用ErrorOr.From方法将错误转换为适当的响应类型:
catch (Exception e)
{
logger.LogError("An exception occurred", e);
return (TResponse)ErrorOrFactory.From(Error.Unexpected());
}
2. 创建特定错误响应
对于不同类型的异常,我们可以创建特定的错误响应:
catch (DbException e)
{
logger.LogError("Database error", e);
return (TResponse)ErrorOrFactory.From(Error.Failure("Database.Error", e.Message));
}
3. 处理任务取消
对于任务取消的情况,可以这样处理:
catch (TaskCanceledException)
{
logger.LogInformation("Task was cancelled");
return (TResponse)ErrorOrFactory.From(Error.Cancelled());
}
实现要点
-
类型转换:由于管道行为需要返回泛型类型TResponse,我们需要将ErrorOr结果显式转换为TResponse。
-
错误分类:根据不同的异常类型创建具有适当代码和描述的错误。
-
日志记录:在返回错误前记录详细的日志信息,便于问题追踪。
-
错误工厂:使用ErrorOrFactory或Error类的静态方法创建标准化的错误对象。
最佳实践
- 为不同类型的错误定义清晰的错误代码
- 保持错误描述对用户友好
- 在日志中包含足够的调试信息
- 考虑创建自定义异常到错误的映射逻辑
- 对于不可恢复的错误,仍然可以考虑抛出异常
总结
通过ErrorOr库与MediatR管道行为的结合,我们可以实现更加优雅和一致的错误处理机制。这种方法不仅使代码更加清晰,还能提供更好的用户体验和更易于维护的错误处理流程。关键在于将异常转换为适当的ErrorOr结果,并通过类型系统确保类型安全。
对于更复杂的场景,开发者可以考虑创建自定义的错误工厂或扩展方法,以进一步简化错误创建和转换的过程。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
646
149
Ascend Extension for PyTorch
Python
207
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
318
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873