深入理解OLLVM-TLL项目中的LibFuzzer覆盖率引导模糊测试技术
2025-06-12 17:18:50作者:廉皓灿Ida
概述
LibFuzzer是LLVM生态系统中的一个核心组件,它是一种进程内(in-process)、覆盖率引导(coverage-guided)的进化式模糊测试引擎。在OLLVM-TLL项目中,LibFuzzer被深度整合用于提升代码的安全性和鲁棒性测试。
LibFuzzer核心原理
LibFuzzer的工作原理是与被测库链接,通过特定的模糊测试入口点(称为"目标函数")向库提供模糊输入。它通过跟踪代码覆盖情况,并根据输入数据语料库生成变异,以最大化代码覆盖率。
关键特性包括:
- 进程内执行:无需进程间通信,效率极高
- 实时覆盖率反馈:利用LLVM的SanitizerCoverage插桩获取精确覆盖率数据
- 进化算法:智能地变异输入以探索新的代码路径
快速入门指南
编写模糊测试目标
模糊测试目标是使用被测API处理输入字节数组的函数,基本结构如下:
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
// 使用Data和Size调用被测API
return 0;
}
编写高质量模糊测试目标的要点:
- 必须能处理任何类型的输入(空、超大、畸形等)
- 不能因任何输入而退出进程
- 尽量保持确定性
- 执行速度要快
- 最好不修改全局状态
构建与运行
使用Clang构建时,通过-fsanitize=fuzzer标志启用LibFuzzer:
clang -g -O1 -fsanitize=fuzzer,address mytarget.c # 带ASAN
clang -g -O1 -fsanitize=fuzzer,undefined mytarget.c # 带UBSAN
高级使用技巧
语料库管理
初始语料库应包含多样化的有效和无效输入样本。LibFuzzer会基于这些样本生成随机变异。
语料库最小化技巧:
mkdir MIN_CORPUS
./my_fuzzer -merge=1 MIN_CORPUS FULL_CORPUS
并行模糊测试
通过-jobs=N和-workers=M参数实现并行化:
-jobs指定总任务数-workers控制同时运行的进程数
选项配置
关键运行选项:
-max_len:控制输入最大长度-timeout:单个测试超时时间-rss_limit_mb:内存限制-dict:提供输入关键字字典-artifact_prefix:指定崩溃样本保存路径
实战示例
简单示例
检测特定输入字符串的测试目标:
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
if (size >= 3 && data[0] == 'H' && data[1] == 'I' && data[2] == '!')
__builtin_trap(); // 触发崩溃
return 0;
}
输出解读
典型输出包含:
cov:覆盖的代码块/边数量ft:覆盖的特征数corp:内存中语料库条目数和大小exec/s:每秒执行次数rss:内存消耗
事件类型:
NEW:发现新覆盖的输入REDUCE:找到更小的等效输入PULSE:周期性状态报告
最佳实践
- 目标设计:保持目标函数简单专注,一个目标测试一个功能点
- 初始种子:提供高质量的初始输入样本
- 资源控制:合理设置超时和内存限制
- 持续集成:将模糊测试纳入自动化测试流程
- 结果分析:定期检查发现的崩溃和异常
在OLLVM-TLL项目中合理应用LibFuzzer,可以显著提升代码质量和安全性,发现传统测试方法难以触达的边界条件问题。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111