Doom Emacs中Coq语言层加载问题的分析与解决
问题背景
在使用Doom Emacs时,用户报告了一个关于Coq语言层加载失败的问题。当启用coq层时,系统会抛出错误,即使在没有自定义配置的情况下也会发生。这个问题在Doom的最新提交中可复现,并且在Emacs的稳定版本(27、28或29)中同样存在。
技术分析
经过深入调查,发现问题根源在于proof-general包在自动加载处理上采用了非传统做法。具体来说,该包将部分代码包装在eval-and-compile块中,这导致在Doom生成的大型自动加载文件上下文中,load-file-name变量无法正确获取。
eval-and-compile是一个特殊的Emacs Lisp构造,它告诉Emacs在编译时和运行时都执行这段代码。这种设计在单个文件环境中工作正常,但在像Doom这样将多个包的自动加载代码合并到一个大文件中的场景下就会出问题。
问题演变
值得注意的是,这个问题在Doom最近的变更后才显现出来。Doom之前会对生成的大型自动加载文件进行字节编译,字节编译过程会替换掉eval-and-compile块及其返回值,从而掩盖了这个问题。然而,字节编译本身也带来了其他问题,因此Doom决定停止对自动加载文件进行字节编译。
临时解决方案
在等待上游修复的同时,Doom团队提供了以下临时解决方案:
- 在packages.el中添加对proof-general包的特定配置:
(package! proof-general
:pin "3a99da275523c8f844fdfa3dd073295eece939f3"
:recipe (:build (:not autoloads)))
- 在config.el中添加直接加载proof-site的配置:
(require 'proof-site
(expand-file-name "generic/proof-site"
(file-name-directory (locate-library "proof-general"))))
这个解决方案通过绕过自动加载机制,直接加载必要的文件来解决问题。
更广泛的影响
这个问题不仅影响Doom用户,实际上任何使用包管理器(如straight、elpaca、el-get等)进行自动加载代码合并的系统都可能遇到类似问题。这凸显了在编写Emacs包时遵循标准自动加载实践的重要性。
最佳实践建议
对于Emacs包开发者,应当避免在自动加载代码中使用eval-and-compile这样的特殊构造,特别是在可能被其他系统处理的代码中。保持自动加载代码的简单性和可预测性,可以确保包在各种不同的Emacs配置中都能正常工作。
结论
通过Doom团队的快速响应,这个问题已经得到了临时解决。这个案例展示了开源社区如何协作解决复杂的技术问题,同时也提醒包开发者需要考虑他们的代码在各种环境中的行为。对于用户来说,保持Doom和Emacs的更新是避免此类问题的好习惯。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00