Lemonade项目中的Quark量化工具使用指南
2025-06-24 00:29:00作者:齐添朝
前言
在深度学习模型部署领域,模型量化技术是优化推理性能的重要手段。本文将详细介绍如何在Lemonade项目中使用AMD推荐的Quark量化框架,帮助开发者高效地将PyTorch或ONNX模型量化并部署到Ryzen AI平台上。
Quark量化框架简介
Quark是AMD官方推荐的量化工具链,专为Ryzen AI平台优化设计。它支持多种量化算法和方案,能够显著减少模型大小并提升推理速度,同时保持较高的模型精度。
环境准备
创建Python环境
推荐使用conda创建一个独立的Python 3.10环境:
conda create -n quark python=3.10
conda activate quark
安装依赖
根据使用场景选择安装选项:
# CPU专用版本
pip install -e .[llm-oga-cpu]
# NPU专用版本
pip install -e .[llm-oga-npu]
# 混合计算版本
pip install -e .[llm-oga-hybrid]
安装Quark
使用Lemonade提供的便捷安装工具:
lemonade-install --quark 0.6.0
该命令会自动下载Quark的wheel文件和zip包,并完成环境配置。
量化工作流程
基本量化命令
lemonade -i <model-ckpt> huggingface-load quark-quantize
--model-export <export_format>
--quant-algo <quantization_algorithm>
--quant-scheme <quantization_scheme>
--device <device>
llm-prompt -p "<prompt>"
参数说明:
model-export: 导出格式,支持quark_safetensors、onnx、gguf等quant-algo: 量化算法,支持GPTQ、AWQ、AutoSmoothQuant等quant-scheme: 量化方案,如w_int4、w_uint4、w_int8等device: 运行设备,可选cpu或cuda
实际案例:OPT-125M模型量化
以下命令将使用AWQ算法对facebook/opt-125m模型进行A8W8量化:
lemonade -i facebook/opt-125m huggingface-load quark-quantize \
--quant-algo awq \
--quant-scheme w_int8_a_int8_per_tensor_sym \
--model-export quark_safetensors \
--device cpu
注意:CPU上的量化过程可能耗时较长,此示例可能需要约1小时完成。
加载量化模型
量化完成后,可以从缓存目录加载模型:
lemonade -i facebook/opt-125m huggingface-load quark-load \
--safetensors-model-reload \
--quant-algo awq \
--quant-scheme w_int8_a_int8_per_tensor_sym \
--device cpu \
llm-prompt -p "Hello world"
支持的量化方案
Quark提供多种量化方案,适用于不同模型和场景:
-
4位量化:
- w_uint4_per_group_asym
- w_int4_per_channel_sym
-
8位量化:
- w_int8_a_int8_per_tensor_sym
- w_int8_per_tensor_sym
开发者应根据模型特性和目标硬件选择合适的量化方案。
模型导出格式
Lemonade支持多种量化模型导出格式:
- quark_safetensors:Quark原生格式,保留完整量化信息
- ONNX:标准ONNX格式,便于跨平台部署
- vllm_adopted_safetensors:适配vLLM框架的格式
- GGUF:通用GPU格式
常见问题与限制
-
安装限制:
- Quark尚未提供PyPI安装包,必须通过Lemonade安装工具安装
- 安装版本在quark_quantize中硬编码检查
-
功能限制:
- 可用API有限,部分功能需依赖Quark发布的zip包
- 日志控制不完善,部分信息无法完全屏蔽
-
性能考虑:
- CPU量化耗时较长,建议在性能较强的机器上运行
- 大模型量化可能需要调整内存配置
最佳实践建议
-
量化前准备:
- 确保原始模型精度达标
- 准备代表性校准数据集
-
方案选择:
- 初次尝试建议从8位量化开始
- 对精度敏感场景慎用4位量化
-
性能优化:
- 在目标硬件上测试不同量化方案
- 比较量化前后的精度损失和推理速度
通过本文介绍的方法,开发者可以充分利用Lemonade项目中的Quark量化工具,为AMD Ryzen AI平台高效地准备和部署量化模型。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26