Lemonade项目中的Quark量化工具使用指南
2025-06-24 09:34:02作者:齐添朝
前言
在深度学习模型部署领域,模型量化技术是优化推理性能的重要手段。本文将详细介绍如何在Lemonade项目中使用AMD推荐的Quark量化框架,帮助开发者高效地将PyTorch或ONNX模型量化并部署到Ryzen AI平台上。
Quark量化框架简介
Quark是AMD官方推荐的量化工具链,专为Ryzen AI平台优化设计。它支持多种量化算法和方案,能够显著减少模型大小并提升推理速度,同时保持较高的模型精度。
环境准备
创建Python环境
推荐使用conda创建一个独立的Python 3.10环境:
conda create -n quark python=3.10
conda activate quark
安装依赖
根据使用场景选择安装选项:
# CPU专用版本
pip install -e .[llm-oga-cpu]
# NPU专用版本
pip install -e .[llm-oga-npu]
# 混合计算版本
pip install -e .[llm-oga-hybrid]
安装Quark
使用Lemonade提供的便捷安装工具:
lemonade-install --quark 0.6.0
该命令会自动下载Quark的wheel文件和zip包,并完成环境配置。
量化工作流程
基本量化命令
lemonade -i <model-ckpt> huggingface-load quark-quantize
--model-export <export_format>
--quant-algo <quantization_algorithm>
--quant-scheme <quantization_scheme>
--device <device>
llm-prompt -p "<prompt>"
参数说明:
model-export: 导出格式,支持quark_safetensors、onnx、gguf等quant-algo: 量化算法,支持GPTQ、AWQ、AutoSmoothQuant等quant-scheme: 量化方案,如w_int4、w_uint4、w_int8等device: 运行设备,可选cpu或cuda
实际案例:OPT-125M模型量化
以下命令将使用AWQ算法对facebook/opt-125m模型进行A8W8量化:
lemonade -i facebook/opt-125m huggingface-load quark-quantize \
--quant-algo awq \
--quant-scheme w_int8_a_int8_per_tensor_sym \
--model-export quark_safetensors \
--device cpu
注意:CPU上的量化过程可能耗时较长,此示例可能需要约1小时完成。
加载量化模型
量化完成后,可以从缓存目录加载模型:
lemonade -i facebook/opt-125m huggingface-load quark-load \
--safetensors-model-reload \
--quant-algo awq \
--quant-scheme w_int8_a_int8_per_tensor_sym \
--device cpu \
llm-prompt -p "Hello world"
支持的量化方案
Quark提供多种量化方案,适用于不同模型和场景:
-
4位量化:
- w_uint4_per_group_asym
- w_int4_per_channel_sym
-
8位量化:
- w_int8_a_int8_per_tensor_sym
- w_int8_per_tensor_sym
开发者应根据模型特性和目标硬件选择合适的量化方案。
模型导出格式
Lemonade支持多种量化模型导出格式:
- quark_safetensors:Quark原生格式,保留完整量化信息
- ONNX:标准ONNX格式,便于跨平台部署
- vllm_adopted_safetensors:适配vLLM框架的格式
- GGUF:通用GPU格式
常见问题与限制
-
安装限制:
- Quark尚未提供PyPI安装包,必须通过Lemonade安装工具安装
- 安装版本在quark_quantize中硬编码检查
-
功能限制:
- 可用API有限,部分功能需依赖Quark发布的zip包
- 日志控制不完善,部分信息无法完全屏蔽
-
性能考虑:
- CPU量化耗时较长,建议在性能较强的机器上运行
- 大模型量化可能需要调整内存配置
最佳实践建议
-
量化前准备:
- 确保原始模型精度达标
- 准备代表性校准数据集
-
方案选择:
- 初次尝试建议从8位量化开始
- 对精度敏感场景慎用4位量化
-
性能优化:
- 在目标硬件上测试不同量化方案
- 比较量化前后的精度损失和推理速度
通过本文介绍的方法,开发者可以充分利用Lemonade项目中的Quark量化工具,为AMD Ryzen AI平台高效地准备和部署量化模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134