Lemonade项目中的Quark量化工具使用指南
2025-06-24 16:55:07作者:齐添朝
前言
在深度学习模型部署领域,模型量化技术是优化推理性能的重要手段。本文将详细介绍如何在Lemonade项目中使用AMD推荐的Quark量化框架,帮助开发者高效地将PyTorch或ONNX模型量化并部署到Ryzen AI平台上。
Quark量化框架简介
Quark是AMD官方推荐的量化工具链,专为Ryzen AI平台优化设计。它支持多种量化算法和方案,能够显著减少模型大小并提升推理速度,同时保持较高的模型精度。
环境准备
创建Python环境
推荐使用conda创建一个独立的Python 3.10环境:
conda create -n quark python=3.10
conda activate quark
安装依赖
根据使用场景选择安装选项:
# CPU专用版本
pip install -e .[llm-oga-cpu]
# NPU专用版本
pip install -e .[llm-oga-npu]
# 混合计算版本
pip install -e .[llm-oga-hybrid]
安装Quark
使用Lemonade提供的便捷安装工具:
lemonade-install --quark 0.6.0
该命令会自动下载Quark的wheel文件和zip包,并完成环境配置。
量化工作流程
基本量化命令
lemonade -i <model-ckpt> huggingface-load quark-quantize
--model-export <export_format>
--quant-algo <quantization_algorithm>
--quant-scheme <quantization_scheme>
--device <device>
llm-prompt -p "<prompt>"
参数说明:
model-export
: 导出格式,支持quark_safetensors、onnx、gguf等quant-algo
: 量化算法,支持GPTQ、AWQ、AutoSmoothQuant等quant-scheme
: 量化方案,如w_int4、w_uint4、w_int8等device
: 运行设备,可选cpu或cuda
实际案例:OPT-125M模型量化
以下命令将使用AWQ算法对facebook/opt-125m模型进行A8W8量化:
lemonade -i facebook/opt-125m huggingface-load quark-quantize \
--quant-algo awq \
--quant-scheme w_int8_a_int8_per_tensor_sym \
--model-export quark_safetensors \
--device cpu
注意:CPU上的量化过程可能耗时较长,此示例可能需要约1小时完成。
加载量化模型
量化完成后,可以从缓存目录加载模型:
lemonade -i facebook/opt-125m huggingface-load quark-load \
--safetensors-model-reload \
--quant-algo awq \
--quant-scheme w_int8_a_int8_per_tensor_sym \
--device cpu \
llm-prompt -p "Hello world"
支持的量化方案
Quark提供多种量化方案,适用于不同模型和场景:
-
4位量化:
- w_uint4_per_group_asym
- w_int4_per_channel_sym
-
8位量化:
- w_int8_a_int8_per_tensor_sym
- w_int8_per_tensor_sym
开发者应根据模型特性和目标硬件选择合适的量化方案。
模型导出格式
Lemonade支持多种量化模型导出格式:
- quark_safetensors:Quark原生格式,保留完整量化信息
- ONNX:标准ONNX格式,便于跨平台部署
- vllm_adopted_safetensors:适配vLLM框架的格式
- GGUF:通用GPU格式
常见问题与限制
-
安装限制:
- Quark尚未提供PyPI安装包,必须通过Lemonade安装工具安装
- 安装版本在quark_quantize中硬编码检查
-
功能限制:
- 可用API有限,部分功能需依赖Quark发布的zip包
- 日志控制不完善,部分信息无法完全屏蔽
-
性能考虑:
- CPU量化耗时较长,建议在性能较强的机器上运行
- 大模型量化可能需要调整内存配置
最佳实践建议
-
量化前准备:
- 确保原始模型精度达标
- 准备代表性校准数据集
-
方案选择:
- 初次尝试建议从8位量化开始
- 对精度敏感场景慎用4位量化
-
性能优化:
- 在目标硬件上测试不同量化方案
- 比较量化前后的精度损失和推理速度
通过本文介绍的方法,开发者可以充分利用Lemonade项目中的Quark量化工具,为AMD Ryzen AI平台高效地准备和部署量化模型。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8