BayesianOptimization库中最后一点预测异常问题分析
2025-05-28 03:10:41作者:昌雅子Ethen
问题描述
在使用BayesianOptimization库进行贝叶斯优化时,发现了一个关于高斯过程回归预测的异常现象:当向优化器添加新数据点后,对最新添加的数据点进行预测时,预测值与实际观测值不一致。
复现步骤
- 初始化贝叶斯优化器,设置参数范围为[-20,20]
- 定义一个示例函数作为"真实"目标函数
- 通过优化器建议并添加3个初始数据点
- 使用高斯过程模型对已添加的点进行预测
- 发现最新添加的数据点预测值与实际值不符
- 继续添加新数据点后,之前"错误"的预测变为正确,但最新点又出现预测偏差
技术分析
这个现象实际上是BayesianOptimization库的预期行为。当调用register方法添加新数据点时,库会先使用当前的高斯过程模型对新点进行预测,然后再将该点加入训练集并重新拟合模型。因此:
- 新添加的点在注册时会被当前模型预测一次
- 该点被加入训练集后,模型重新拟合
- 此时如果立即查询该点的预测值,得到的是重新拟合前的预测结果
解决方案
要获取最新添加点的准确预测值,有以下几种方法:
- 在添加新点后,先调用
bo._gp.fit()手动重新拟合模型 - 添加多个点后再查询预测值,这样前几个点的预测会是准确的
- 理解这是库的预期行为,在分析结果时考虑这一特性
最佳实践建议
- 批量添加多个点后再进行预测分析
- 如果需要精确的即时预测,可以手动触发模型重新拟合
- 在结果分析时,注意区分哪些点是新添加尚未被当前模型完全吸收的
总结
BayesianOptimization库的这种设计是为了优化计算效率,避免在每次添加单个点时都重新拟合模型。理解这一机制有助于正确使用库的功能,避免在优化过程中产生困惑。在实际应用中,建议用户根据具体需求选择合适的点添加和预测策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134