AutoGen框架中集成Gemini模型的技术实践
2025-05-02 12:28:18作者:郜逊炳
在AutoGen框架的最新版本0.5.1中,开发者可以通过扩展模块实现对Google Gemini系列模型的支持。本文将详细介绍如何正确配置Gemini模型作为AutoGen的模型客户端,以及相关技术细节。
模型支持机制
AutoGen框架通过OpenAIChatCompletionClient扩展模块实现了对非OpenAI模型的支持。框架内置了对部分Gemini模型的预设支持,包括:
- gemini-pro
- gemini-1.5-pro
- gemini-1.5-flash
- gemini-ultra
这些预设模型已经包含了完整的模型能力描述信息,开发者可以直接使用而无需额外配置。
自定义模型配置
当需要使用框架未预设的Gemini模型(如gemini-2.0-flash-lite)时,开发者需要手动提供ModelInfo参数来声明模型能力。ModelInfo包含以下关键属性:
- vision:是否支持视觉输入
- function_calling:是否支持函数调用
- json_output:是否支持JSON格式输出
- structured_output:是否支持结构化输出
- family:模型系列标识
典型配置示例如下:
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_core.models import ModelInfo
model_client = OpenAIChatCompletionClient(
model="gemini-2.0-flash-lite",
model_info=ModelInfo(
vision=False,
function_calling=True,
json_output=False,
family="unknown",
structured_output=False
),
api_key="YOUR_API_KEY"
)
AutoGen Studio集成
在AutoGen Studio环境中,可以通过JSON配置方式添加自定义Gemini模型。配置模板如下:
{
"provider": "autogen_ext.models.openai.OpenAIChatCompletionClient",
"component_type": "model",
"config": {
"model": "gemini-2.0-flash-lite",
"model_info": {
"vision": false,
"function_calling": true,
"json_output": false,
"family": "unknown",
"structured_output": false
},
"api_key": "YOUR_API_KEY"
}
}
技术要点
- 模型能力声明是必须的,框架依赖这些信息来决定如何处理输入输出
- 对于不支持的模型,必须提供完整的ModelInfo配置
- 在Studio环境中,配置方式与代码方式等效,但采用JSON格式
- 所有Gemini模型都通过OpenAIChatCompletionClient扩展模块接入,保持接口统一
通过以上方式,开发者可以灵活地在AutoGen框架中使用各种Gemini模型,充分发挥其多模态和函数调用等高级特性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355