Barista 项目最佳实践指南
1、项目介绍
Barista 是一个基于 Espresso 的 Android UI 测试框架,它提供了一个简单且易于发现的 API,旨在加快、简化并使 UI 测试更可靠。Barista 通过减少 Espresso 任务中的样板代码和冗长性,帮助开发者轻松编写测试。
2、项目快速启动
安装依赖
首先,你需要在你的项目中添加 Barista 作为测试依赖。在你的 build.gradle 文件中,添加以下代码:
androidTestImplementation('com.adevinta.android:barista:4.2.0') {
exclude group: 'org.jetbrains.kotlin'
// 只有当你的项目已经使用 Kotlin 时才需要
}
如果你使用的是 Espresso 3,可能还需要包含 Google Maven 仓库:
repositories {
google()
}
Barista 已经包含了 espresso-core 和 espresso-contrib。如果你需要其他 Espresso 包,可以自行添加。
编写第一个测试
创建一个新的测试类,然后添加以下测试方法:
import com.adevinta.android.barista.BaristaAssertions;
import com.adevinta.android.barista.BaristaInteractions;
import org.junit.Test;
public class MainActivityTest {
@Test
public void clickButton() {
BaristaInteractions.clickOn(R.id.button);
BaristaAssertions.assertDisplayed(R.id.button);
}
}
这个简单的测试点击一个按钮并断言它被显示出来。
3、应用案例和最佳实践
单元测试与 UI 测试分离
最佳实践是将单元测试与 UI 测试分离,以便可以独立运行和调试。使用 Barista,你可以专注于 UI 的行为测试,而将业务逻辑的测试留给单元测试。
使用清晰的断言
使用 Barista 的断言 API,你可以编写清晰的断言,使得测试更容易理解和维护。例如,使用 assertDisplayed 来断言视图是可见的,或者使用 assertNotExist 来断言视图不存在。
处理易变测试
易变测试可能会因为网络延迟、动画或其他原因而失败。使用 Barista,你可以通过一些策略来处理易变测试,例如使用 withDelay 或 withMatcher。
4、典型生态项目
Barista 可以与其他测试工具和框架集成,例如 Robolectric 和 Mockito,以提供更全面的测试解决方案。此外,Barista 也与 Cucumber 等行为驱动开发框架兼容,使得测试更加直观和易于理解。
通过遵循这些最佳实践,你可以有效地使用 Barista 来改进你的 Android UI 测试流程,提高代码质量和开发效率。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00