EnvoyProxy Gateway中的追踪采样率配置详解
在分布式系统监控领域,请求追踪是理解系统行为和诊断问题的重要工具。EnvoyProxy Gateway作为云原生API网关,提供了灵活的追踪配置选项。本文将深入分析EnvoyProxy Gateway中两种不同的追踪采样率配置方式及其适用场景。
采样率配置的两种形式
EnvoyProxy Gateway支持两种形式的采样率配置:
-
samplingRate:整数百分比形式,范围在0到100之间。这种形式简单直观,适合需要粗略控制采样率的场景。例如,设置为10表示采样10%的请求。
-
samplingFraction:分数形式,通过分子(numerator)和分母(denominator)来精确控制采样比例。这种形式适合需要精细控制采样率的场景,特别是当采样率很低时。例如,设置numerator为1,denominator为1000表示采样0.1%的请求。
底层实现机制
在底层实现上,这两种配置方式都映射到Envoy的类型系统。samplingRate对应的是百分比类型,而samplingFraction则提供了更精确的分数表示。这种设计既保留了简单场景下的易用性,又满足了高精度控制的需求。
实际应用建议
在实际生产环境中,建议根据具体需求选择合适的配置方式:
-
对于高流量服务,通常需要设置较低的采样率以避免产生过多的追踪数据。这时使用samplingFraction更为合适,可以精确控制如0.1%这样的低采样率。
-
对于调试或低流量环境,可以使用samplingRate设置较高的采样率,如50%或100%,以便获取足够的追踪数据进行分析。
配置示例
以下是一个完整的追踪配置示例,展示了两种采样率配置方式:
tracing:
provider: jaeger
# 使用百分比形式采样10%的请求
samplingRate: 10
# 或者使用分数形式采样0.1%的请求
samplingFraction:
numerator: 1
denominator: 1000
总结
EnvoyProxy Gateway提供了灵活的追踪采样率配置选项,开发者可以根据实际需求选择最适合的配置方式。理解这两种配置方式的区别和适用场景,有助于构建更高效的分布式系统监控方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00