Grafbase项目发布0.25.0版本:增强可信文档的渐进式采用能力
Grafbase是一个现代化的GraphQL网关解决方案,它帮助开发者构建、部署和管理GraphQL API。作为GraphQL生态中的重要工具,Grafbase提供了强大的功能来优化API性能、安全性和可维护性。
可信文档功能的渐进式采用策略
在最新发布的0.25.0版本中,Grafbase对可信文档(Trusted Documents)功能进行了重要改进,使其支持更加灵活的渐进式采用策略。可信文档是GraphQL API安全性的重要组成部分,它通过预先注册和验证查询来防止恶意查询和查询注入攻击。
配置选项的扩展
新版本引入了更细粒度的配置选项,允许团队根据实际需求逐步实施可信文档策略。在grafbase.toml配置文件中,现在可以设置以下参数:
[trusted_documents]
enabled = true
enforced = true
bypass_header_name = "my-header-name"
bypass_header_value = "my-secret-is-{{ env.SECRET_HEADER_VALUE }}"
document_id_unknown_log_level = "error"
document_id_and_query_mismatch_log_level = "off"
inline_document_unknown_log_level = "warn"
渐进式采用的三阶段
-
监控阶段:仅设置
enabled = true时,网关会获取并缓存可信文档,但不强制执行。这允许团队收集数据并了解当前查询使用情况。 -
过渡阶段:通过配置不同的日志级别,团队可以监控潜在问题。例如,设置
document_id_unknown_log_level = "warn"可以在控制台看到哪些文档ID未被识别,而不会中断服务。 -
强制执行阶段:当
enforced = true时,网关将完全实施可信文档策略。新版本还放宽了对仅包含内联文档请求的限制,为迁移提供了更大的灵活性。
日志级别的精细控制
新版本引入了三种专门的日志级别设置,帮助团队更好地监控和调试可信文档的使用情况:
-
未知文档ID日志:记录请求中包含文档ID但找不到对应可信文档的情况。
-
文档ID与查询不匹配日志:记录同时发送查询文档和文档ID时,获取的可信文档与内联查询不匹配的情况。
-
内联文档未知日志:记录发送内联文档但找不到匹配可信文档的情况。
每种日志都可以独立配置为off、error、warn、info或debug级别,默认均为info级别。
其他改进
除了可信文档功能的增强外,0.25.0版本还修复了@skip和@include指令在反序列化子图响应时可能不被正确处理的问题,进一步提高了GraphQL查询的准确性和可靠性。
总结
Grafbase 0.25.0版本通过引入可信文档的渐进式采用策略,为团队提供了更平滑的迁移路径。这种分阶段的方法降低了采用门槛,使组织能够在不中断现有服务的情况下逐步提高API安全性。同时,精细的日志控制为监控和调试提供了强大工具,确保在完全强制执行前发现并解决潜在问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00