Grafbase项目发布0.25.0版本:增强可信文档的渐进式采用能力
Grafbase是一个现代化的GraphQL网关解决方案,它帮助开发者构建、部署和管理GraphQL API。作为GraphQL生态中的重要工具,Grafbase提供了强大的功能来优化API性能、安全性和可维护性。
可信文档功能的渐进式采用策略
在最新发布的0.25.0版本中,Grafbase对可信文档(Trusted Documents)功能进行了重要改进,使其支持更加灵活的渐进式采用策略。可信文档是GraphQL API安全性的重要组成部分,它通过预先注册和验证查询来防止恶意查询和查询注入攻击。
配置选项的扩展
新版本引入了更细粒度的配置选项,允许团队根据实际需求逐步实施可信文档策略。在grafbase.toml配置文件中,现在可以设置以下参数:
[trusted_documents]
enabled = true
enforced = true
bypass_header_name = "my-header-name"
bypass_header_value = "my-secret-is-{{ env.SECRET_HEADER_VALUE }}"
document_id_unknown_log_level = "error"
document_id_and_query_mismatch_log_level = "off"
inline_document_unknown_log_level = "warn"
渐进式采用的三阶段
-
监控阶段:仅设置
enabled = true时,网关会获取并缓存可信文档,但不强制执行。这允许团队收集数据并了解当前查询使用情况。 -
过渡阶段:通过配置不同的日志级别,团队可以监控潜在问题。例如,设置
document_id_unknown_log_level = "warn"可以在控制台看到哪些文档ID未被识别,而不会中断服务。 -
强制执行阶段:当
enforced = true时,网关将完全实施可信文档策略。新版本还放宽了对仅包含内联文档请求的限制,为迁移提供了更大的灵活性。
日志级别的精细控制
新版本引入了三种专门的日志级别设置,帮助团队更好地监控和调试可信文档的使用情况:
-
未知文档ID日志:记录请求中包含文档ID但找不到对应可信文档的情况。
-
文档ID与查询不匹配日志:记录同时发送查询文档和文档ID时,获取的可信文档与内联查询不匹配的情况。
-
内联文档未知日志:记录发送内联文档但找不到匹配可信文档的情况。
每种日志都可以独立配置为off、error、warn、info或debug级别,默认均为info级别。
其他改进
除了可信文档功能的增强外,0.25.0版本还修复了@skip和@include指令在反序列化子图响应时可能不被正确处理的问题,进一步提高了GraphQL查询的准确性和可靠性。
总结
Grafbase 0.25.0版本通过引入可信文档的渐进式采用策略,为团队提供了更平滑的迁移路径。这种分阶段的方法降低了采用门槛,使组织能够在不中断现有服务的情况下逐步提高API安全性。同时,精细的日志控制为监控和调试提供了强大工具,确保在完全强制执行前发现并解决潜在问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00