Redisson中RMapCache.getAllWithTTLOnly()方法的性能优化实践
2025-05-08 12:46:37作者:姚月梅Lane
问题背景
在使用Redisson的RMapCache时,许多开发者会遇到一个常见的性能瓶颈问题。当使用getAllWithTTLOnly()方法批量获取大量键值对时,Redis实例的CPU使用率会出现显著飙升,导致系统延迟增加和吞吐量下降。
问题分析
通过深入分析,我们发现问题的根源在于getAllWithTTLOnly()方法的底层实现机制。该方法实际上是通过Lua脚本实现的,但脚本内部采用了逐个键查询的方式(使用多个hget命令),而非更高效的批量查询方式(如hmget)。
以一个典型场景为例:
- 应用每秒执行5000次
getAllWithTTLOnly()调用 - 每次调用平均查询16个键
- 最终导致Redis集群每秒需要处理约80,000次
GetTypeCmds命令
这种实现方式导致了以下问题:
- 网络往返开销增加
- Redis命令处理压力倍增
- CPU使用率飙升(可达80%)
- 系统整体性能下降
解决方案
1. 自定义Lua脚本优化
最有效的解决方案是编写自定义的Lua脚本,使用hmget命令实现批量查询功能。以下是一个优化后的Lua脚本示例:
local map = {}
local values = redis.call('HMGET', KEYS[1], unpack(ARGV))
for i, value in ipairs(values) do
local key = ARGV[i]
if value ~= false then
map[i] = value
end
end
return map
这个脚本通过单次HMGET命令获取所有键的值,显著减少了Redis需要处理的命令数量。
2. 异步TTL管理
由于自定义脚本无法直接获取TTL信息,可以考虑以下替代方案:
- 实现异步的TTL检查机制
- 将TTL信息存储在单独的哈希结构中
- 定期批量检查和更新过期键
3. 集群分片优化
对于大规模应用,可以考虑增加Redis集群的分片数量。通过将数据分散到更多分片上,可以降低单个节点的负载压力。
优化效果
实施上述优化后,我们观察到:
- Redis的
GetTypeCmds命令数量大幅减少 - CPU使用率从80%降至25-30%
- 系统吞吐量显著提升
- 请求延迟明显降低
最佳实践建议
- 对于批量查询场景,优先考虑使用
hmget而非多个hget - 合理设计键的TTL管理策略
- 根据负载情况适当调整集群分片数量
- 监控Redis的关键指标,如
EngineCPUUtilization和命令执行频率 - 考虑使用Redisson的最新版本,其中可能包含性能优化
通过以上优化措施,开发者可以显著提升使用Redisson RMapCache时的系统性能,特别是在高并发批量查询场景下。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1