Redisson中RMapCache.getAllWithTTLOnly()方法的性能优化实践
2025-05-08 09:18:08作者:姚月梅Lane
问题背景
在使用Redisson的RMapCache时,许多开发者会遇到一个常见的性能瓶颈问题。当使用getAllWithTTLOnly()方法批量获取大量键值对时,Redis实例的CPU使用率会出现显著飙升,导致系统延迟增加和吞吐量下降。
问题分析
通过深入分析,我们发现问题的根源在于getAllWithTTLOnly()方法的底层实现机制。该方法实际上是通过Lua脚本实现的,但脚本内部采用了逐个键查询的方式(使用多个hget命令),而非更高效的批量查询方式(如hmget)。
以一个典型场景为例:
- 应用每秒执行5000次
getAllWithTTLOnly()调用 - 每次调用平均查询16个键
- 最终导致Redis集群每秒需要处理约80,000次
GetTypeCmds命令
这种实现方式导致了以下问题:
- 网络往返开销增加
- Redis命令处理压力倍增
- CPU使用率飙升(可达80%)
- 系统整体性能下降
解决方案
1. 自定义Lua脚本优化
最有效的解决方案是编写自定义的Lua脚本,使用hmget命令实现批量查询功能。以下是一个优化后的Lua脚本示例:
local map = {}
local values = redis.call('HMGET', KEYS[1], unpack(ARGV))
for i, value in ipairs(values) do
local key = ARGV[i]
if value ~= false then
map[i] = value
end
end
return map
这个脚本通过单次HMGET命令获取所有键的值,显著减少了Redis需要处理的命令数量。
2. 异步TTL管理
由于自定义脚本无法直接获取TTL信息,可以考虑以下替代方案:
- 实现异步的TTL检查机制
- 将TTL信息存储在单独的哈希结构中
- 定期批量检查和更新过期键
3. 集群分片优化
对于大规模应用,可以考虑增加Redis集群的分片数量。通过将数据分散到更多分片上,可以降低单个节点的负载压力。
优化效果
实施上述优化后,我们观察到:
- Redis的
GetTypeCmds命令数量大幅减少 - CPU使用率从80%降至25-30%
- 系统吞吐量显著提升
- 请求延迟明显降低
最佳实践建议
- 对于批量查询场景,优先考虑使用
hmget而非多个hget - 合理设计键的TTL管理策略
- 根据负载情况适当调整集群分片数量
- 监控Redis的关键指标,如
EngineCPUUtilization和命令执行频率 - 考虑使用Redisson的最新版本,其中可能包含性能优化
通过以上优化措施,开发者可以显著提升使用Redisson RMapCache时的系统性能,特别是在高并发批量查询场景下。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250