GraphQL Kotlin 中的 DefaultAutomaticPersistedQueriesCache 双重解析问题分析
2025-07-08 18:35:32作者:余洋婵Anita
在 GraphQL Kotlin 8.3.0 版本中,DefaultAutomaticPersistedQueriesCache 实现存在一个性能优化问题,会导致查询文档被重复解析和验证。这个问题主要影响自动持久化查询(APQ)功能的缓存机制。
问题背景
自动持久化查询是 GraphQL 中的一项优化技术,它允许客户端发送查询的哈希值而不是完整的查询字符串。服务器端会缓存这些查询,当收到哈希值时直接从缓存中获取预解析的文档,避免重复解析的开销。
在 GraphQL Kotlin 的实现中,DefaultAutomaticPersistedQueriesCache 负责管理这个缓存。其核心方法是 getOrElse,它接受一个缓存键、执行输入和一个文档解析的供应商函数。
问题代码分析
问题出在缓存未命中时的处理逻辑。当缓存中不存在指定键时,代码会先调用供应商函数获取预解析文档并存入缓存,但随后又再次调用供应商函数来创建返回的 CompletableFuture:
override fun getOrElse(
key: String,
executionInput: ExecutionInput,
supplier: () -> PreparsedDocumentEntry
): CompletableFuture<PreparsedDocumentEntry> =
cache[key]?.let { entry ->
CompletableFuture.completedFuture(entry)
} ?: run {
val entry = supplier.invoke() // 第一次调用
cache[key] = entry
CompletableFuture.completedFuture(supplier.invoke()) // 第二次调用
}
这种实现会导致两个问题:
- 性能损耗:每次缓存未命中时都会执行两次文档解析和验证
- 潜在不一致:两次调用供应商函数理论上可能返回不同的结果
问题影响
文档解析和验证是 GraphQL 查询处理中相对耗时的操作,特别是在查询复杂的情况下。重复执行这些操作会:
- 增加服务器CPU负载
- 延长查询响应时间
- 降低系统整体吞吐量
解决方案
正确的实现应该是重用第一次解析的结果,而不是再次调用供应商函数。修复后的代码应该是:
override fun getOrElse(
key: String,
executionInput: ExecutionInput,
supplier: () -> PreparsedDocumentEntry
): CompletableFuture<PreparsedDocumentEntry> =
cache[key]?.let { entry ->
CompletableFuture.completedFuture(entry)
} ?: run {
val entry = supplier.invoke()
cache[key] = entry
CompletableFuture.completedFuture(entry) // 使用已缓存的entry
}
最佳实践
在处理缓存逻辑时,开发人员应该注意:
- 确保缓存未命中时的计算只执行一次
- 考虑使用原子操作避免并发环境下的重复计算
- 对于耗时操作,可以考虑使用异步加载模式
- 在性能敏感的场景中,应该对缓存实现进行基准测试
这个问题的修复虽然简单,但对系统性能有显著影响,特别是在高负载环境下。它提醒我们在实现缓存逻辑时需要格外小心,避免类似的性能陷阱。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135