FunASR在Mac M系列芯片上的GPU加速实践
2025-05-23 01:13:50作者:咎岭娴Homer
背景介绍
随着苹果M系列芯片的普及,越来越多的开发者希望在Mac设备上充分利用其GPU性能来加速深度学习推理任务。FunASR作为阿里巴巴达摩院开源的语音识别工具包,原生支持多种硬件加速方案,但在Mac平台上使用Metal Performance Shaders(MPS)进行加速需要特殊配置。
技术挑战
FunASR默认的自动设备选择逻辑会强制将非CUDA设备回退到CPU模式,这导致即使用户显式指定了MPS设备也无法启用GPU加速。通过分析源代码发现,auto_model.py中存在强制回退到CPU的逻辑,这主要是出于兼容性考虑,但影响了M系列芯片用户的体验。
解决方案
要实现Mac M系列芯片的GPU加速,需要进行以下修改:
- 修改设备检测逻辑 在build_model函数中,需要注释掉强制回退到CPU的代码段,允许MPS设备被正确识别和使用。修改后的关键代码如下:
device = kwargs.get("device", "cuda")
# 注释掉强制回退CPU的代码
# if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0:
# device = "cpu"
# kwargs["batch_size"] = 1
kwargs["device"] = device
- 正确配置运行参数 在启动服务或模型时,需要明确指定设备类型为mps:
parser.add_argument("--device", type=str, default="mps", help="device type")
性能提升
实际测试表明,在Mac M2 Max设备上,启用MPS加速后:
- 流式推理速度从5 it/s提升到12 it/s
- 端到端延迟显著降低
- GPU利用率明显提高
注意事项
-
模型兼容性 目前SenseVoiceSmall等模型已确认可以在MPS下正常运行,但说话人识别模型(spk_model)可能存在兼容性问题。
-
环境要求
- PyTorch 2.0+
- macOS 12.3+
- 建议使用Python 3.8+环境
未来优化方向
-
官方支持改进 建议FunASR官方增加对MPS设备的自动检测和优化支持,而不是简单地回退到CPU模式。
-
性能调优 可以进一步探索:
- 内存使用优化
- 批处理大小调整
- 混合精度计算
总结
通过在FunASR中启用MPS支持,Mac M系列芯片用户可以获得显著的性能提升。这一实践不仅适用于语音识别任务,也为其他基于PyTorch的深度学习应用在Mac平台上的GPU加速提供了参考方案。随着苹果芯片生态的不断完善,期待更多深度学习框架能原生支持MPS加速。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
410
3.16 K
Ascend Extension for PyTorch
Python
227
254
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
264
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868