首页
/ FunASR在Mac M系列芯片上的GPU加速实践

FunASR在Mac M系列芯片上的GPU加速实践

2025-05-23 14:25:36作者:咎岭娴Homer

背景介绍

随着苹果M系列芯片的普及,越来越多的开发者希望在Mac设备上充分利用其GPU性能来加速深度学习推理任务。FunASR作为阿里巴巴达摩院开源的语音识别工具包,原生支持多种硬件加速方案,但在Mac平台上使用Metal Performance Shaders(MPS)进行加速需要特殊配置。

技术挑战

FunASR默认的自动设备选择逻辑会强制将非CUDA设备回退到CPU模式,这导致即使用户显式指定了MPS设备也无法启用GPU加速。通过分析源代码发现,auto_model.py中存在强制回退到CPU的逻辑,这主要是出于兼容性考虑,但影响了M系列芯片用户的体验。

解决方案

要实现Mac M系列芯片的GPU加速,需要进行以下修改:

  1. 修改设备检测逻辑 在build_model函数中,需要注释掉强制回退到CPU的代码段,允许MPS设备被正确识别和使用。修改后的关键代码如下:
device = kwargs.get("device", "cuda")
# 注释掉强制回退CPU的代码
# if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0:
#    device = "cpu"
#    kwargs["batch_size"] = 1
kwargs["device"] = device
  1. 正确配置运行参数 在启动服务或模型时,需要明确指定设备类型为mps:
parser.add_argument("--device", type=str, default="mps", help="device type")

性能提升

实际测试表明,在Mac M2 Max设备上,启用MPS加速后:

  • 流式推理速度从5 it/s提升到12 it/s
  • 端到端延迟显著降低
  • GPU利用率明显提高

注意事项

  1. 模型兼容性 目前SenseVoiceSmall等模型已确认可以在MPS下正常运行,但说话人识别模型(spk_model)可能存在兼容性问题。

  2. 环境要求

  • PyTorch 2.0+
  • macOS 12.3+
  • 建议使用Python 3.8+环境

未来优化方向

  1. 官方支持改进 建议FunASR官方增加对MPS设备的自动检测和优化支持,而不是简单地回退到CPU模式。

  2. 性能调优 可以进一步探索:

  • 内存使用优化
  • 批处理大小调整
  • 混合精度计算

总结

通过在FunASR中启用MPS支持,Mac M系列芯片用户可以获得显著的性能提升。这一实践不仅适用于语音识别任务,也为其他基于PyTorch的深度学习应用在Mac平台上的GPU加速提供了参考方案。随着苹果芯片生态的不断完善,期待更多深度学习框架能原生支持MPS加速。

热门项目推荐
相关项目推荐

项目优选

收起
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
410
313
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
87
153
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
41
103
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
50
13
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
267
388
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TSX
293
28
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
86
236
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
607
70
carboncarbon
轻量级、语义化、对开发者友好的 golang 时间处理库
Go
7
2
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
341
193