FunASR在Mac M系列芯片上的GPU加速实践
2025-05-23 14:25:36作者:咎岭娴Homer
背景介绍
随着苹果M系列芯片的普及,越来越多的开发者希望在Mac设备上充分利用其GPU性能来加速深度学习推理任务。FunASR作为阿里巴巴达摩院开源的语音识别工具包,原生支持多种硬件加速方案,但在Mac平台上使用Metal Performance Shaders(MPS)进行加速需要特殊配置。
技术挑战
FunASR默认的自动设备选择逻辑会强制将非CUDA设备回退到CPU模式,这导致即使用户显式指定了MPS设备也无法启用GPU加速。通过分析源代码发现,auto_model.py中存在强制回退到CPU的逻辑,这主要是出于兼容性考虑,但影响了M系列芯片用户的体验。
解决方案
要实现Mac M系列芯片的GPU加速,需要进行以下修改:
- 修改设备检测逻辑 在build_model函数中,需要注释掉强制回退到CPU的代码段,允许MPS设备被正确识别和使用。修改后的关键代码如下:
device = kwargs.get("device", "cuda")
# 注释掉强制回退CPU的代码
# if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0:
# device = "cpu"
# kwargs["batch_size"] = 1
kwargs["device"] = device
- 正确配置运行参数 在启动服务或模型时,需要明确指定设备类型为mps:
parser.add_argument("--device", type=str, default="mps", help="device type")
性能提升
实际测试表明,在Mac M2 Max设备上,启用MPS加速后:
- 流式推理速度从5 it/s提升到12 it/s
- 端到端延迟显著降低
- GPU利用率明显提高
注意事项
-
模型兼容性 目前SenseVoiceSmall等模型已确认可以在MPS下正常运行,但说话人识别模型(spk_model)可能存在兼容性问题。
-
环境要求
- PyTorch 2.0+
- macOS 12.3+
- 建议使用Python 3.8+环境
未来优化方向
-
官方支持改进 建议FunASR官方增加对MPS设备的自动检测和优化支持,而不是简单地回退到CPU模式。
-
性能调优 可以进一步探索:
- 内存使用优化
- 批处理大小调整
- 混合精度计算
总结
通过在FunASR中启用MPS支持,Mac M系列芯片用户可以获得显著的性能提升。这一实践不仅适用于语音识别任务,也为其他基于PyTorch的深度学习应用在Mac平台上的GPU加速提供了参考方案。随着苹果芯片生态的不断完善,期待更多深度学习框架能原生支持MPS加速。
登录后查看全文
热门项目推荐
相关项目推荐
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp课程页面空白问题的技术分析与解决方案4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析
最新内容推荐
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
274
488

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
448
368

React Native鸿蒙化仓库
C++
98
178

openGauss kernel ~ openGauss is an open source relational database management system
C++
52
121

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
88
245

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
638
77

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
348
34

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
29
37

插件化、定制化、无广告的免费音乐播放器
TSX
33
2