WeClone项目中大模型微调与数据清洗的显存优化实践
2025-06-24 13:44:40作者:邓越浪Henry
问题背景
在WeClone项目中使用Qwen2.5-7B-Instruct模型进行微调和数据预处理时,开发者遇到了显存管理的挑战。具体表现为:微调阶段显存占用约32GiB,推理阶段约15.3GiB,但在数据预处理阶段开启打分功能时,显存占用会迅速超过48GiB,导致单卡A6000(48GiB显存)无法完成任务。
技术分析
显存占用差异原因
- 微调阶段:通常采用梯度检查点(Gradient Checkpointing)和混合精度训练等技术,可以有效控制显存占用
- 推理阶段:仅需加载模型参数和少量中间状态,显存需求相对较低
- 数据预处理打分阶段:需要同时加载完整模型、处理批量数据并计算分数,且可能缺乏显存优化策略
关键发现
通过日志分析发现,vLLM引擎默认配置的gpu_memory_utilization参数为0.95(即允许使用95%的GPU显存),这在处理复杂任务时容易导致显存溢出。特别是在执行以下操作时显存需求激增:
- 同时处理大量数据样本
- 维护模型推理状态
- 存储中间计算结果
解决方案
调整vLLM内存利用率参数
将gpu_memory_utilization从默认的0.95降低到0.8,显著改善了显存使用情况:
engine_args = {
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"dtype": model_args.infer_dtype,
"max_model_len": cutoff_len + max_new_tokens,
"disable_log_stats": True,
"enable_lora": model_args.adapter_name_or_path is not None,
"enable_prefix_caching": True,
"gpu_memory_utilization": 0.8, # 关键调整
}
优化效果
调整后:
- 峰值显存占用降至约46GiB
- 成功避免了显存溢出的问题
- 保持了模型推理和打分功能的正常运行
深入优化建议
- 分批处理:将大数据集分成小批次进行处理
- 量化技术:考虑使用4-bit或8-bit量化进一步减少显存占用
- 内存管理:设置
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True减少内存碎片 - 监控工具:使用NVIDIA-smi或PyTorch内存分析工具实时监控显存使用
经验总结
在大型语言模型应用中,显存管理是关键挑战之一。WeClone项目的实践经验表明:
- 不同任务阶段(训练、推理、预处理)的显存需求差异显著
- 框架默认参数可能需要根据具体硬件调整
- 适度的内存利用率预留(如20%)可以显著提高系统稳定性
- 综合运用多种优化技术才能充分发挥硬件潜力
这一案例为类似规模的LLM应用开发提供了有价值的参考,特别是在资源受限环境下的显存优化策略。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19