WeClone项目中大模型微调与数据清洗的显存优化实践
2025-06-24 11:44:27作者:邓越浪Henry
问题背景
在WeClone项目中使用Qwen2.5-7B-Instruct模型进行微调和数据预处理时,开发者遇到了显存管理的挑战。具体表现为:微调阶段显存占用约32GiB,推理阶段约15.3GiB,但在数据预处理阶段开启打分功能时,显存占用会迅速超过48GiB,导致单卡A6000(48GiB显存)无法完成任务。
技术分析
显存占用差异原因
- 微调阶段:通常采用梯度检查点(Gradient Checkpointing)和混合精度训练等技术,可以有效控制显存占用
- 推理阶段:仅需加载模型参数和少量中间状态,显存需求相对较低
- 数据预处理打分阶段:需要同时加载完整模型、处理批量数据并计算分数,且可能缺乏显存优化策略
关键发现
通过日志分析发现,vLLM引擎默认配置的gpu_memory_utilization
参数为0.95(即允许使用95%的GPU显存),这在处理复杂任务时容易导致显存溢出。特别是在执行以下操作时显存需求激增:
- 同时处理大量数据样本
- 维护模型推理状态
- 存储中间计算结果
解决方案
调整vLLM内存利用率参数
将gpu_memory_utilization
从默认的0.95降低到0.8,显著改善了显存使用情况:
engine_args = {
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"dtype": model_args.infer_dtype,
"max_model_len": cutoff_len + max_new_tokens,
"disable_log_stats": True,
"enable_lora": model_args.adapter_name_or_path is not None,
"enable_prefix_caching": True,
"gpu_memory_utilization": 0.8, # 关键调整
}
优化效果
调整后:
- 峰值显存占用降至约46GiB
- 成功避免了显存溢出的问题
- 保持了模型推理和打分功能的正常运行
深入优化建议
- 分批处理:将大数据集分成小批次进行处理
- 量化技术:考虑使用4-bit或8-bit量化进一步减少显存占用
- 内存管理:设置
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
减少内存碎片 - 监控工具:使用NVIDIA-smi或PyTorch内存分析工具实时监控显存使用
经验总结
在大型语言模型应用中,显存管理是关键挑战之一。WeClone项目的实践经验表明:
- 不同任务阶段(训练、推理、预处理)的显存需求差异显著
- 框架默认参数可能需要根据具体硬件调整
- 适度的内存利用率预留(如20%)可以显著提高系统稳定性
- 综合运用多种优化技术才能充分发挥硬件潜力
这一案例为类似规模的LLM应用开发提供了有价值的参考,特别是在资源受限环境下的显存优化策略。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193