WeClone项目中大模型微调与数据清洗的显存优化实践
2025-06-24 10:49:04作者:邓越浪Henry
问题背景
在WeClone项目中使用Qwen2.5-7B-Instruct模型进行微调和数据预处理时,开发者遇到了显存管理的挑战。具体表现为:微调阶段显存占用约32GiB,推理阶段约15.3GiB,但在数据预处理阶段开启打分功能时,显存占用会迅速超过48GiB,导致单卡A6000(48GiB显存)无法完成任务。
技术分析
显存占用差异原因
- 微调阶段:通常采用梯度检查点(Gradient Checkpointing)和混合精度训练等技术,可以有效控制显存占用
- 推理阶段:仅需加载模型参数和少量中间状态,显存需求相对较低
- 数据预处理打分阶段:需要同时加载完整模型、处理批量数据并计算分数,且可能缺乏显存优化策略
关键发现
通过日志分析发现,vLLM引擎默认配置的gpu_memory_utilization参数为0.95(即允许使用95%的GPU显存),这在处理复杂任务时容易导致显存溢出。特别是在执行以下操作时显存需求激增:
- 同时处理大量数据样本
- 维护模型推理状态
- 存储中间计算结果
解决方案
调整vLLM内存利用率参数
将gpu_memory_utilization从默认的0.95降低到0.8,显著改善了显存使用情况:
engine_args = {
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"dtype": model_args.infer_dtype,
"max_model_len": cutoff_len + max_new_tokens,
"disable_log_stats": True,
"enable_lora": model_args.adapter_name_or_path is not None,
"enable_prefix_caching": True,
"gpu_memory_utilization": 0.8, # 关键调整
}
优化效果
调整后:
- 峰值显存占用降至约46GiB
- 成功避免了显存溢出的问题
- 保持了模型推理和打分功能的正常运行
深入优化建议
- 分批处理:将大数据集分成小批次进行处理
- 量化技术:考虑使用4-bit或8-bit量化进一步减少显存占用
- 内存管理:设置
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True减少内存碎片 - 监控工具:使用NVIDIA-smi或PyTorch内存分析工具实时监控显存使用
经验总结
在大型语言模型应用中,显存管理是关键挑战之一。WeClone项目的实践经验表明:
- 不同任务阶段(训练、推理、预处理)的显存需求差异显著
- 框架默认参数可能需要根据具体硬件调整
- 适度的内存利用率预留(如20%)可以显著提高系统稳定性
- 综合运用多种优化技术才能充分发挥硬件潜力
这一案例为类似规模的LLM应用开发提供了有价值的参考,特别是在资源受限环境下的显存优化策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135