WeClone项目中大模型微调与数据清洗的显存优化实践
2025-06-24 18:55:04作者:邓越浪Henry
问题背景
在WeClone项目中使用Qwen2.5-7B-Instruct模型进行微调和数据预处理时,开发者遇到了显存管理的挑战。具体表现为:微调阶段显存占用约32GiB,推理阶段约15.3GiB,但在数据预处理阶段开启打分功能时,显存占用会迅速超过48GiB,导致单卡A6000(48GiB显存)无法完成任务。
技术分析
显存占用差异原因
- 微调阶段:通常采用梯度检查点(Gradient Checkpointing)和混合精度训练等技术,可以有效控制显存占用
- 推理阶段:仅需加载模型参数和少量中间状态,显存需求相对较低
- 数据预处理打分阶段:需要同时加载完整模型、处理批量数据并计算分数,且可能缺乏显存优化策略
关键发现
通过日志分析发现,vLLM引擎默认配置的gpu_memory_utilization参数为0.95(即允许使用95%的GPU显存),这在处理复杂任务时容易导致显存溢出。特别是在执行以下操作时显存需求激增:
- 同时处理大量数据样本
- 维护模型推理状态
- 存储中间计算结果
解决方案
调整vLLM内存利用率参数
将gpu_memory_utilization从默认的0.95降低到0.8,显著改善了显存使用情况:
engine_args = {
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"dtype": model_args.infer_dtype,
"max_model_len": cutoff_len + max_new_tokens,
"disable_log_stats": True,
"enable_lora": model_args.adapter_name_or_path is not None,
"enable_prefix_caching": True,
"gpu_memory_utilization": 0.8, # 关键调整
}
优化效果
调整后:
- 峰值显存占用降至约46GiB
- 成功避免了显存溢出的问题
- 保持了模型推理和打分功能的正常运行
深入优化建议
- 分批处理:将大数据集分成小批次进行处理
- 量化技术:考虑使用4-bit或8-bit量化进一步减少显存占用
- 内存管理:设置
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True减少内存碎片 - 监控工具:使用NVIDIA-smi或PyTorch内存分析工具实时监控显存使用
经验总结
在大型语言模型应用中,显存管理是关键挑战之一。WeClone项目的实践经验表明:
- 不同任务阶段(训练、推理、预处理)的显存需求差异显著
- 框架默认参数可能需要根据具体硬件调整
- 适度的内存利用率预留(如20%)可以显著提高系统稳定性
- 综合运用多种优化技术才能充分发挥硬件潜力
这一案例为类似规模的LLM应用开发提供了有价值的参考,特别是在资源受限环境下的显存优化策略。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210