在NeMo-Guardrails中集成vLLM托管的大语言模型
背景介绍
NeMo-Guardrails是NVIDIA推出的开源框架,用于为大语言模型(LLM)应用添加安全防护层。在实际应用中,开发者经常需要将Guardrails框架与自定义部署的LLM集成,而不是直接使用OpenAI等商业API。vLLM是一个高性能的LLM推理和服务库,能够高效地托管开源大语言模型。
集成方案
基础配置方法
最简单的集成方式是通过修改config.yml配置文件,将模型引擎指定为vLLM:
models:
- type: main
engine: vllm_openai
parameters:
openai_api_base: "http://localhost:5000/v1"
model_name: "your_model_name"
这种配置方式假设vLLM服务已经以OpenAI兼容的API格式运行在本地5000端口。需要注意的是,虽然vLLM本身不需要API密钥,但NeMo-Guardrails的集成层仍会要求设置OPENAI_API_KEY环境变量,可以设置为任意值如"abc123"。
高级编程集成
对于更复杂的场景,可以通过编程方式动态配置模型参数。这种方法特别适合需要从环境变量读取配置的情况:
import os
from nemoguardrails.rails.llm.config import Model
from nemoguardrails import LLMRails, RailsConfig
# 从环境变量获取配置
CHAT_MODEL = os.environ["CHAT_MODEL"]
API_KEY = os.environ["API_KEY"] # 可以是任意值
BASE_URL = os.environ["BASE_URL"]
# 创建模型配置
RAILS_MODEL = Model(
type="main",
engine="vllm_openai",
model=CHAT_MODEL,
parameters={
"openai_api_base": BASE_URL,
"openai_api_key": API_KEY,
"model_name": CHAT_MODEL,
},
)
# 加载基础配置并替换模型
base_config = RailsConfig.from_path("/path/to/config")
base_config.models = [RAILS_MODEL]
rails = LLMRails(base_config)
自定义LLM初始化
对于需要完全控制LLM初始化过程的场景,可以使用自定义初始化方法:
import os
from nemoguardrails import LLMRails
from nemoguardrails.llm.helpers import get_llm_instance_wrapper
from nemoguardrails.llm.providers import register_llm_provider
from langchain_community.llms import VLLM
def init(llm_rails: LLMRails):
# 从环境变量获取模型名称
llm = VLLM(
model=os.environ.get("VLLM_MODEL_NAME"),
trust_remote_code=True,
max_new_tokens=128,
top_k=10,
top_p=0.95,
temperature=0.8,
)
# 注册自定义LLM提供者
provider = get_llm_instance_wrapper(
llm_instance=llm, llm_type="vllm_custom"
)
register_llm_provider("vllm_custom", provider)
这种方法提供了最大的灵活性,可以完全自定义LLM的初始化参数。
技术要点
-
兼容性处理:虽然vLLM不需要真正的OpenAI API密钥,但集成层仍会检查该参数的存在,需要设置一个占位值。
-
模型托管:vLLM可以托管Hugging Face上的开源模型,如Meta-Llama-3系列,通过指定模型名称即可加载。
-
性能考量:vLLM的高效内存管理使其特别适合资源受限的环境,与NeMo-Guardrails结合可以构建既高效又安全的LLM应用。
-
部署方式:vLLM可以部署在本地机器或云服务器上,通过Docker容器化部署是推荐的生产级方案。
总结
NeMo-Guardrails与vLLM的集成为开发者提供了一种在自有基础设施上构建安全、高效LLM应用的方案。无论是通过简单的配置文件修改,还是通过编程方式深度定制,都能实现灵活的集成。这种组合特别适合对数据隐私有严格要求,或需要使用特定开源模型的企业场景。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00