Locust性能回归问题分析与解决方案
背景介绍
Locust作为一款流行的负载测试工具,近期用户在使用过程中遇到了明显的性能下降问题。用户报告称,在从Locust 2.17.0升级到2.26.0版本后,相同的测试环境和配置下,系统吞吐量出现了显著下降。
问题现象
用户最初在Amazon Linux 2系统上使用Python 3.7和Locust 2.17.0版本,通过5台c5n.xlarge EC2实例作为worker节点,能够稳定支持1200个用户并发,达到预期的1200请求/秒的吞吐量。测试中使用了constant_throughput(1)等待时间策略。
当用户升级到Amazon Linux 2023系统(Python 3.11)和Locust 2.26.0版本后,相同的硬件配置只能支持约830个用户并发,实际吞吐量降至约330请求/秒。此时worker进程的CPU使用率已接近100%。
问题排查
经过深入分析,发现以下几个关键因素影响了性能表现:
-
OpenSSL版本问题:Python 3.11默认使用OpenSSL 3.x版本,已知在SSL握手阶段存在性能问题,特别是对于频繁关闭和重新建立连接的情况。这解释了为什么CPU使用率会显著上升。
-
DNS解析开销:测试脚本中每次请求后都关闭连接,导致每次请求都需要重新进行DNS解析。在分布式环境中,这会产生额外的网络开销。
-
Python版本差异:不同Python版本在底层实现上的差异,特别是网络相关模块的性能表现可能有所不同。
解决方案
针对上述问题,可以采取以下优化措施:
-
保持连接复用:修改测试脚本,避免每次请求后都关闭连接。这可以显著减少SSL握手和DNS解析的开销。
-
使用较新的Locust版本:升级到Locust 2.31.0或更高版本,该版本修复了一些已知的性能问题。
-
优化系统配置:
- 启用本地DNS缓存
- 选择合适的Python版本(如Python 3.10)
- 使用较新的操作系统版本(如Ubuntu 20.04)
-
监控关键指标:密切关注响应时间和系统资源使用情况,确保不会因为响应时间增加而导致吞吐量下降。
最佳实践建议
-
在进行大规模负载测试前,建议先进行小规模验证测试,确认系统配置和工具版本的兼容性。
-
对于需要高吞吐量的测试场景,建议:
- 使用连接池技术
- 适当增加worker节点数量
- 监控网络层面的性能指标
-
保持Locust和相关依赖库的版本更新,但升级前应充分测试验证。
通过以上优化措施,用户最终在Locust 2.31.0版本上恢复了预期的性能表现。这提醒我们在性能测试中,工具版本、系统配置和测试脚本优化都是不可忽视的重要因素。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00