Locust性能回归问题分析与解决方案
背景介绍
Locust作为一款流行的负载测试工具,近期用户在使用过程中遇到了明显的性能下降问题。用户报告称,在从Locust 2.17.0升级到2.26.0版本后,相同的测试环境和配置下,系统吞吐量出现了显著下降。
问题现象
用户最初在Amazon Linux 2系统上使用Python 3.7和Locust 2.17.0版本,通过5台c5n.xlarge EC2实例作为worker节点,能够稳定支持1200个用户并发,达到预期的1200请求/秒的吞吐量。测试中使用了constant_throughput(1)等待时间策略。
当用户升级到Amazon Linux 2023系统(Python 3.11)和Locust 2.26.0版本后,相同的硬件配置只能支持约830个用户并发,实际吞吐量降至约330请求/秒。此时worker进程的CPU使用率已接近100%。
问题排查
经过深入分析,发现以下几个关键因素影响了性能表现:
-
OpenSSL版本问题:Python 3.11默认使用OpenSSL 3.x版本,已知在SSL握手阶段存在性能问题,特别是对于频繁关闭和重新建立连接的情况。这解释了为什么CPU使用率会显著上升。
-
DNS解析开销:测试脚本中每次请求后都关闭连接,导致每次请求都需要重新进行DNS解析。在分布式环境中,这会产生额外的网络开销。
-
Python版本差异:不同Python版本在底层实现上的差异,特别是网络相关模块的性能表现可能有所不同。
解决方案
针对上述问题,可以采取以下优化措施:
-
保持连接复用:修改测试脚本,避免每次请求后都关闭连接。这可以显著减少SSL握手和DNS解析的开销。
-
使用较新的Locust版本:升级到Locust 2.31.0或更高版本,该版本修复了一些已知的性能问题。
-
优化系统配置:
- 启用本地DNS缓存
- 选择合适的Python版本(如Python 3.10)
- 使用较新的操作系统版本(如Ubuntu 20.04)
-
监控关键指标:密切关注响应时间和系统资源使用情况,确保不会因为响应时间增加而导致吞吐量下降。
最佳实践建议
-
在进行大规模负载测试前,建议先进行小规模验证测试,确认系统配置和工具版本的兼容性。
-
对于需要高吞吐量的测试场景,建议:
- 使用连接池技术
- 适当增加worker节点数量
- 监控网络层面的性能指标
-
保持Locust和相关依赖库的版本更新,但升级前应充分测试验证。
通过以上优化措施,用户最终在Locust 2.31.0版本上恢复了预期的性能表现。这提醒我们在性能测试中,工具版本、系统配置和测试脚本优化都是不可忽视的重要因素。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00