Locust性能回归问题分析与解决方案
背景介绍
Locust作为一款流行的负载测试工具,近期用户在使用过程中遇到了明显的性能下降问题。用户报告称,在从Locust 2.17.0升级到2.26.0版本后,相同的测试环境和配置下,系统吞吐量出现了显著下降。
问题现象
用户最初在Amazon Linux 2系统上使用Python 3.7和Locust 2.17.0版本,通过5台c5n.xlarge EC2实例作为worker节点,能够稳定支持1200个用户并发,达到预期的1200请求/秒的吞吐量。测试中使用了constant_throughput(1)等待时间策略。
当用户升级到Amazon Linux 2023系统(Python 3.11)和Locust 2.26.0版本后,相同的硬件配置只能支持约830个用户并发,实际吞吐量降至约330请求/秒。此时worker进程的CPU使用率已接近100%。
问题排查
经过深入分析,发现以下几个关键因素影响了性能表现:
-
OpenSSL版本问题:Python 3.11默认使用OpenSSL 3.x版本,已知在SSL握手阶段存在性能问题,特别是对于频繁关闭和重新建立连接的情况。这解释了为什么CPU使用率会显著上升。
-
DNS解析开销:测试脚本中每次请求后都关闭连接,导致每次请求都需要重新进行DNS解析。在分布式环境中,这会产生额外的网络开销。
-
Python版本差异:不同Python版本在底层实现上的差异,特别是网络相关模块的性能表现可能有所不同。
解决方案
针对上述问题,可以采取以下优化措施:
-
保持连接复用:修改测试脚本,避免每次请求后都关闭连接。这可以显著减少SSL握手和DNS解析的开销。
-
使用较新的Locust版本:升级到Locust 2.31.0或更高版本,该版本修复了一些已知的性能问题。
-
优化系统配置:
- 启用本地DNS缓存
- 选择合适的Python版本(如Python 3.10)
- 使用较新的操作系统版本(如Ubuntu 20.04)
-
监控关键指标:密切关注响应时间和系统资源使用情况,确保不会因为响应时间增加而导致吞吐量下降。
最佳实践建议
-
在进行大规模负载测试前,建议先进行小规模验证测试,确认系统配置和工具版本的兼容性。
-
对于需要高吞吐量的测试场景,建议:
- 使用连接池技术
- 适当增加worker节点数量
- 监控网络层面的性能指标
-
保持Locust和相关依赖库的版本更新,但升级前应充分测试验证。
通过以上优化措施,用户最终在Locust 2.31.0版本上恢复了预期的性能表现。这提醒我们在性能测试中,工具版本、系统配置和测试脚本优化都是不可忽视的重要因素。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









