PFL-Non-IID项目中Shakespeare数据集处理问题解析
2025-07-09 15:40:44作者:申梦珏Efrain
问题背景
在使用PFL-Non-IID项目进行联邦学习实验时,研究人员发现当尝试在Shakespeare数据集上运行FedAvg算法和LSTM模型时,遇到了几个关键的技术问题。这些问题主要涉及数据预处理、模型输入格式以及数据集划分等方面。
核心问题分析
1. 数据文件保存格式差异
项目中的generate_Shakespeare.py与generate_MNIST.py在保存.npz文件时采用了不同的命名规范。这种不一致性导致utils/data_utils.py中的read_data()方法无法正确找到对应的文件路径。
技术细节:
- MNIST数据生成器使用标准化的命名约定
- Shakespeare数据生成器采用了不同的文件命名策略
- 这种差异导致路径解析失败
2. 模型输入维度不匹配
当尝试修正第一个问题后,系统又出现了模型输入维度不匹配的错误。具体表现为LSTM模型期望接收两个参数(text和text_lengths),但实际传入的却是一个(10,80)维度的张量。
深入分析:
- LSTM模型设计预期输入为文本序列及其长度
- 实际数据预处理流程产生了单张量输入
- 这种维度不匹配导致模型无法正确前向传播
3. 数据集划分机制
与MNIST等数据集不同,Shakespeare数据集直接使用了LEAF框架的预划分方式,因此不需要设置non-iid、balance等划分参数。
技术实现:
- LEAF框架提供了标准化的数据集划分
- 这种划分已经考虑了联邦学习的特性
- 避免了人工划分可能引入的偏差
解决方案
针对上述问题,项目维护者已经提供了修复方案:
- 统一了数据文件的保存和命名规范
- 调整了数据预处理流程,确保与模型输入要求匹配
- 保留了LEAF框架的原生划分方式,确保数据分布合理性
实践建议
对于希望在PFL-Non-IID项目中使用Shakespeare数据集的研究人员,建议:
- 使用最新版本的项目代码,确保已包含相关修复
- 理解LSTM模型对输入数据的特殊要求
- 注意不同数据集预处理流程的差异
- 充分利用LEAF框架提供的数据划分优势
总结
在联邦学习研究中,数据预处理和模型输入的适配是常见的技术挑战。PFL-Non-IID项目通过标准化处理流程和利用成熟框架,为研究人员提供了可靠的基础设施。理解这些技术细节有助于更高效地进行实验和研究工作。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
451
3.36 K
Ascend Extension for PyTorch
Python
254
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
832
407
暂无简介
Dart
705
167
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
162
59
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19