GPD(Grasp Pose Detection)项目安装与使用指南
2024-09-25 18:50:12作者:邵娇湘
项目简介
GPD,即Grasp Pose Detection,是用于在点云数据中检测6自由度(6-DOF)抓取姿态的开源包。特别适用于无先验CAD模型的新物体,能够在密集杂乱环境中工作,并提供多于顶部抓取的更复杂姿势。该库适用于两指机器人手,如平行爪式抓取器。
目录结构及介绍
atenpas/gpd
├── cfg # 配置文件夹,包含网络参数、工作空间设定等
│ └── eigen_params.cfg # 示例配置文件,控制抓取候选的搜索空间与采样数量
├── contrib # 辅助代码或工具
├── include/gpd # 头文件,定义了GPD的核心类和接口
├── models # 神经网络模型文件夹,存储预训练权重
├── pytorch # PyTorch相关的代码,包括数据处理和模型训练脚本
├── README.md # 项目的主要说明文档
├── src # 源码文件夹,包含了GPD的主要实现逻辑
└── tutorials # 教程文件,示例点云数据和演示脚本
项目的启动文件介绍
GPD没有单一的“启动文件”概念,而是通过命令行接口来调用其功能。例如,通过运行以下命令来检测一个点云文件中的抓取姿态:
./detect_grasps /cfg/eigen_params.cfg /tutorials/krylon.pcd
这里的detect_grasps不是一个单独的文件,而是编译后可执行程序的一部分,它由项目源码编译生成,实现了检测点云中的抓取姿态的功能。
项目的配置文件介绍
主配置文件:cfg/eigen_params.cfg
这是项目的核心配置文件之一,主要调整项包括:
- workspace:定义了一个立方体区域,在这个区域内搜索抓取姿态,形如[minX, maxX, minY, maxY, minZ, maxZ]。
- num_samples:从点云中抽取的样本数,增加此数值可以提高抓取姿态的探测量,但也会增加计算时间。
- 其他参数:还包括影响神经网络输入的视图设置、输入通道数量等,根据实际需求进行调整。
其他配置考量
对于特定场景或者想要利用双传感器数据时,可能还需修改其他配置文件以适应单视图或双视图模式,并指定相应的CNN模型路径和相机位置信息。
以上是对GPD项目关键部分的基本介绍,安装和详细使用步骤需参照提供的GitHub仓库中的具体文档和示例脚本进行操作。确保遵循依赖项要求,正确编译和配置项目,以便顺利应用到你的开发环境中。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92