Qwen2-7B-Instruct模型在fp16精度下的注意力计算问题分析
2025-05-11 21:07:40作者:何举烈Damon
在Qwen2-7B-Instruct模型的实际应用中,研究人员发现了一个值得注意的精度问题。当模型在fp16精度下运行并使用eager attention计算模式时,在LongBench/passage_retrieval_zh数据集上会出现数值不稳定的情况。
问题现象
具体表现为模型输出中出现大量"!"标记,经深入分析发现这是由于在注意力计算过程中产生了数值溢出。在eager模式下,Q(查询)与K(键)的转置矩阵相乘时会产生超出fp16表示范围的大数值,导致结果为inf或-inf。这些异常值经过softmax函数处理后进一步变为NaN(非数字),最终影响了模型的输出质量。
对比分析
有趣的是,当使用flash-attn2或sdpa这两种优化的注意力计算方式时,问题并未出现。这是因为:
- flash-attn2和sdpa采用了融合算子技术
- 这些优化实现内部可能包含了数值稳定性的处理机制
- 融合计算减少了中间结果的存储和转换,降低了数值溢出的风险
解决方案
对于遇到类似问题的开发者,建议采取以下措施:
-
优先使用flash-attn2或sdpa等优化的注意力计算方式
-
如果必须使用eager模式,考虑采用以下方法提高数值稳定性:
- 使用fp32精度进行计算
- 实现注意力分数缩放(attention score scaling)
- 添加适当的数值裁剪(numerical clipping)
-
在模型推理配置中明确指定使用优化的注意力计算后端
技术启示
这一现象揭示了大型语言模型在低精度计算中的潜在挑战。fp16虽然能提高计算效率并减少内存占用,但也带来了数值表示范围缩小的问题。特别是在注意力机制这种涉及大量矩阵运算的场景中,数值稳定性需要特别关注。
开发者在使用类似Qwen这样的大型预训练模型时,应当充分了解不同计算模式的特点和限制,根据具体应用场景选择最合适的配置方案。同时,这也提示我们在模型优化过程中,不能只关注计算效率,还需要兼顾数值稳定性这一基础要求。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217