Whisper net 使用教程
2024-08-08 09:45:36作者:裴锟轩Denise
本教程将指导您了解和使用开源项目 Whisper net,这是一个基于 Whisper 模型的简单语音识别和翻译工具。
1. 项目目录结构及介绍
在whisper.net
项目中,目录结构大致如下:
├── src
│ ├── Whisper.Net // 主要的 C# 库,包含 Whisper 的 .NET 封装
│ └── Whisper.Runtime // 本地构建的运行时库,包含了 whisper_cpp
└── samples // 示例代码,展示了如何使用 Whisper net
├── ConsoleApp // 控制台应用示例
└── WinFormApp // Windows Form 应用示例
src/Whisper.Net
: 包含 Whisper net 的核心功能,提供了对 Whisper 模型的接口。src/Whisper.Runtime
: 提供了与 Whisper cpp 库交互的运行时组件。samples
: 存放演示如何使用 Whisper net 的实例代码。
2. 项目的启动文件介绍
控制台应用示例 (ConsoleApp
)
在samples\ConsoleApp
中,Program.cs
是主要的启动文件。这个文件展示了如何初始化 Whisper net,加载模型并进行语音识别。
using System;
using Whisper;
namespace ConsoleApp
{
class Program
{
static void Main(string[] args)
{
// 初始化 Whisper
var whisper = new Whisper();
// 加载模型
whisper.LoadModel("path/to/model");
// 读取音频文件
var audioPath = "path/to/audio.wav";
var audioBytes = File.ReadAllBytes(audioPath);
// 进行语音识别
var transcription = whisper.Recognize(audioBytes);
Console.WriteLine($"Transcription: {transcription}");
}
}
}
Windows Form 应例 (WinFormApp
)
在samples\WinFormApp
里, MainForm.cs
是主要的 UI 类,展示了一个简单的界面,用户可以通过此界面上传音频文件,然后触发识别过程。
using System.Windows.Forms;
using Whisper;
public partial class MainForm : Form
{
private Whisper whisper;
public MainForm()
{
InitializeComponent();
whisper = new Whisper();
}
private async void btnRecognize_Click(object sender, EventArgs e)
{
var openFileDialog = new OpenFileDialog { Filter = "WAV files (*.wav)|*.wav" };
if (openFileDialog.ShowDialog() == DialogResult.OK)
{
var audioPath = openFileDialog.FileName;
var audioBytes = File.ReadAllBytes(audioPath);
var transcription = whisper.Recognize(audioBytes);
txtResult.Text = $"Transcription: {transcription}";
}
}
}
3. 项目的配置文件介绍
Whisper net 项目本身并不包含特定的配置文件,因为它的主要配置是在代码中完成的。例如,模型路径是在初始化 Whisper
对象时指定的,如上述示例所示。如果您需要自定义运行时行为或模型参数,您可能需要在代码中添加额外的逻辑或者创建自己的配置文件。
如果需要使用特定的环境变量或配置文件来动态调整模型的行为(比如改变日志级别或指定缓存位置),这通常是通过在应用程序代码中读取这些配置并相应地传递给 Whisper 类的方法来实现的。
请注意,本教程假设您已具备.NET Framework 或.NET Core 开发背景,以及基本的 C# 编程知识。在实际操作前,确保已正确安装所需的开发环境并熟悉相关的编程语言。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5