react-native-transformers 的安装和配置教程
项目基础介绍
react-native-transformers 是一个开源项目,它允许开发者直接在 React Native 和 Expo 应用程序中运行 Hugging Face 的变压器模型,实现设备端推理。这意味着应用程序可以在不发送数据到外部服务器的情况下生成文本、回答问题以及处理语言,从而提高隐私保护、减少延迟,并支持离线功能。
该项目主要使用 JavaScript 编程语言,并依赖于 React Native 和 ONNX Runtime。
项目使用的关键技术和框架
- React Native:一个用于构建原生移动应用的 JavaScript 框架。
- ONNX Runtime:一个高性能的跨平台机器学习推理引擎,用于在移动设备上执行模型。
- Hugging Face Transformers:一个提供预训练变压器模型和模型托管的平台。
安装和配置准备工作
在开始安装 react-native-transformers 之前,请确保您已经准备好了以下环境:
- Node.js 和 npm:用于安装项目依赖。
- React Native 开发环境:包括 React Native CLI 或 Expo。
- 对于 React Native CLI 项目,确保您已经链接了必要的原生模块。
安装步骤
1. 安装依赖
首先,您需要安装 onnxruntime-react-native 的 peer dependencies:
npm install onnxruntime-react-native
然后,安装 react-native-transformers:
对于 React Native 项目:
npm install react-native-transformers
对于 Expo 项目:
npx expo install react-native-transformers
2. 平台配置
对于 React Native CLI 项目,您需要链接 onnxruntime-react-native 库:
npx react-native link onnxruntime-react-native
对于 Expo 项目,您需要在 app.json 或 app.config.js 中添加 Expo 插件配置:
{
"expo": {
"plugins": [
"onnxruntime-react-native"
]
}
}
3. Babel 配置
添加 babel-plugin-transform-import-meta 插件到您的 Babel 配置中:
// babel.config.js
module.exports = {
// ...您现有的配置
plugins: [
// ...您现有的插件
"babel-plugin-transform-import-meta"
]
};
之后,运行以下命令来清除 Metro bundler 缓存:
npx expo start --clear
4. 开发环境设置
由于 ONNX Runtime 和 react-native-transformers 包含原生代码,开发测试时需要使用开发客户端而不是 Expo Go。
您可以使用以下方法之一设置开发客户端:
- EAS Development Build:使用 EAS Build 创建自定义开发客户端。
- Expo Prebuild:弹出为裸机工作流以访问原生代码。
按照这些步骤操作后,您就可以开始使用 react-native-transformers 在您的 React Native 或 Expo 应用程序中运行变压器模型了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00