Deep-RL-Class项目在Apple Silicon芯片上的ML-Agents安装指南
2025-06-14 16:22:18作者:贡沫苏Truman
背景介绍
Deep-RL-Class是一个基于Unity ML-Agents的深度强化学习教学项目,该项目第七单元需要使用ML-Agents工具包进行训练。然而,在Apple Silicon芯片(M1/M2)的Mac设备上,标准的安装流程会遇到若干兼容性问题。
主要问题分析
在Apple Silicon设备上安装ML-Agents时,开发者会遇到三个主要技术障碍:
- ONNX运行时构建失败:由于默认配置不兼容ARM架构,导致无法正确构建ONNX wheel文件
- gRPC字符编码错误:Python环境中gRPC包的版本兼容性问题
- 训练命令路径差异:Mac平台可执行文件路径结构与Windows/Linux不同
详细解决方案
1. 获取正确的ML-Agents分支
标准安装流程会从主分支(main)获取ML-Agents,但这在Apple Silicon上会导致ONNX构建失败。正确的做法是:
git clone -b develop https://github.com/Unity-Technologies/ml-agents.git
develop分支包含了针对ARM架构的最新配置更新,能够正确处理ONNX运行时的构建。
2. 解决gRPC兼容性问题
安装完成后,执行ml-agents --help可能会遇到字符编码错误。这是因为PyPI安装的gRPC包与conda虚拟环境存在兼容性问题。解决方案是:
conda install grpcio
这会确保gRPC库与当前Python环境完全兼容。
3. Mac平台专用训练命令
Mac平台的可执行文件路径结构与Windows/Linux不同,正确的训练命令应为:
mlagents-learn ./config/poca/SoccerTwos.yaml --env=./training-envs-executables/SoccerTwos/SoccerTwos.app --run-id="SoccerTwos" --no-graphics
注意.app后缀是Mac应用程序包的标志,这与Windows的.exe或Linux的无后缀可执行文件不同。
最佳实践建议
- 环境隔离:始终在conda虚拟环境中进行安装,避免污染系统Python环境
- 清理缓存:在重新安装前,建议清理pip缓存(
pip cache purge)和旧的构建文件 - 版本控制:记录所有安装包的版本号,便于问题复现和解决
- 日志检查:安装失败时,仔细阅读错误日志,通常包含有价值的调试信息
总结
Apple Silicon芯片虽然性能强大,但在兼容性方面仍存在一些挑战。通过使用ML-Agents的develop分支、正确安装gRPC库以及使用Mac专用的命令格式,开发者可以顺利完成Deep-RL-Class项目在M1/M2芯片Mac设备上的环境配置。这些经验也适用于其他基于ML-Agents的强化学习项目开发。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
暂无简介
Dart
639
145
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100