Deep-RL-Class项目在Apple Silicon芯片上的ML-Agents安装指南
2025-06-14 16:22:18作者:贡沫苏Truman
背景介绍
Deep-RL-Class是一个基于Unity ML-Agents的深度强化学习教学项目,该项目第七单元需要使用ML-Agents工具包进行训练。然而,在Apple Silicon芯片(M1/M2)的Mac设备上,标准的安装流程会遇到若干兼容性问题。
主要问题分析
在Apple Silicon设备上安装ML-Agents时,开发者会遇到三个主要技术障碍:
- ONNX运行时构建失败:由于默认配置不兼容ARM架构,导致无法正确构建ONNX wheel文件
- gRPC字符编码错误:Python环境中gRPC包的版本兼容性问题
- 训练命令路径差异:Mac平台可执行文件路径结构与Windows/Linux不同
详细解决方案
1. 获取正确的ML-Agents分支
标准安装流程会从主分支(main)获取ML-Agents,但这在Apple Silicon上会导致ONNX构建失败。正确的做法是:
git clone -b develop https://github.com/Unity-Technologies/ml-agents.git
develop分支包含了针对ARM架构的最新配置更新,能够正确处理ONNX运行时的构建。
2. 解决gRPC兼容性问题
安装完成后,执行ml-agents --help可能会遇到字符编码错误。这是因为PyPI安装的gRPC包与conda虚拟环境存在兼容性问题。解决方案是:
conda install grpcio
这会确保gRPC库与当前Python环境完全兼容。
3. Mac平台专用训练命令
Mac平台的可执行文件路径结构与Windows/Linux不同,正确的训练命令应为:
mlagents-learn ./config/poca/SoccerTwos.yaml --env=./training-envs-executables/SoccerTwos/SoccerTwos.app --run-id="SoccerTwos" --no-graphics
注意.app后缀是Mac应用程序包的标志,这与Windows的.exe或Linux的无后缀可执行文件不同。
最佳实践建议
- 环境隔离:始终在conda虚拟环境中进行安装,避免污染系统Python环境
- 清理缓存:在重新安装前,建议清理pip缓存(
pip cache purge)和旧的构建文件 - 版本控制:记录所有安装包的版本号,便于问题复现和解决
- 日志检查:安装失败时,仔细阅读错误日志,通常包含有价值的调试信息
总结
Apple Silicon芯片虽然性能强大,但在兼容性方面仍存在一些挑战。通过使用ML-Agents的develop分支、正确安装gRPC库以及使用Mac专用的命令格式,开发者可以顺利完成Deep-RL-Class项目在M1/M2芯片Mac设备上的环境配置。这些经验也适用于其他基于ML-Agents的强化学习项目开发。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30