在Darts项目中为CatBoost模型指定损失函数的实践指南
2025-05-27 00:14:06作者:苗圣禹Peter
背景介绍
Darts是一个强大的时间序列预测库,提供了多种机器学习模型的支持,包括CatBoost这类梯度提升树模型。在实际应用中,选择合适的损失函数对于模型性能至关重要。
CatBoost模型中的损失函数设置
在Darts中使用CatBoost模型时,可以通过模型初始化参数直接指定损失函数。例如,要使用平均绝对百分比误差(MAPE)作为损失函数,可以这样配置:
CatBoostModel(..., loss_function="MAPE")
这种设置方式利用了Darts对CatBoost原生API的封装能力,所有CatBoost支持的损失函数都可以通过这种方式指定。
默认损失函数行为
当用户不显式指定损失函数时,CatBoost模型会使用默认的损失函数。根据CatBoost的文档,回归任务的默认损失函数通常是RMSE(均方根误差)。这解释了为什么在某些情况下,不指定损失函数反而能得到更好的MAPE表现:
- RMSE对异常值更敏感,会迫使模型更关注大误差的样本
- MAPE对接近零的实际值会变得不稳定
- 不同的损失函数优化目标不同,可能导致验证集表现差异
损失函数选择的实践建议
-
理解业务需求:如果业务上更关注百分比误差,MAPE是合适的选择;如果更关注绝对误差,MAE可能更好
-
评估指标一致性:尽量使训练损失函数与最终评估指标一致,但要注意某些损失函数(如MAPE)的数学特性
-
多指标验证:不要仅依赖单一指标,建议同时监控多个评估指标
-
交叉验证:使用交叉验证来评估不同损失函数的稳定性
-
超参数调优:更换损失函数后,可能需要重新调整其他超参数
其他Darts模型的损失函数设置
对于Darts中的神经网络模型(如TiDEModel),损失函数的设置方式略有不同:
from darts.utils.losses import MapeLoss
from darts.models import TiDEModel
TiDEModel(..., loss_fn=MapeLoss())
Darts为神经网络模型提供了一系列内置的损失函数实现,使用方式更加面向对象。
总结
在Darts项目中合理设置损失函数是优化模型性能的重要环节。通过理解不同损失函数的特性及其对模型训练的影响,开发者可以针对具体业务场景做出更明智的选择。特别是在使用CatBoost等集成模型时,直接利用原生API支持的损失函数可以简化开发流程,但需要注意评估指标与损失函数的关系。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
282
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
272
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871