在Darts项目中为CatBoost模型指定损失函数的实践指南
2025-05-27 04:12:08作者:苗圣禹Peter
背景介绍
Darts是一个强大的时间序列预测库,提供了多种机器学习模型的支持,包括CatBoost这类梯度提升树模型。在实际应用中,选择合适的损失函数对于模型性能至关重要。
CatBoost模型中的损失函数设置
在Darts中使用CatBoost模型时,可以通过模型初始化参数直接指定损失函数。例如,要使用平均绝对百分比误差(MAPE)作为损失函数,可以这样配置:
CatBoostModel(..., loss_function="MAPE")
这种设置方式利用了Darts对CatBoost原生API的封装能力,所有CatBoost支持的损失函数都可以通过这种方式指定。
默认损失函数行为
当用户不显式指定损失函数时,CatBoost模型会使用默认的损失函数。根据CatBoost的文档,回归任务的默认损失函数通常是RMSE(均方根误差)。这解释了为什么在某些情况下,不指定损失函数反而能得到更好的MAPE表现:
- RMSE对异常值更敏感,会迫使模型更关注大误差的样本
- MAPE对接近零的实际值会变得不稳定
- 不同的损失函数优化目标不同,可能导致验证集表现差异
损失函数选择的实践建议
-
理解业务需求:如果业务上更关注百分比误差,MAPE是合适的选择;如果更关注绝对误差,MAE可能更好
-
评估指标一致性:尽量使训练损失函数与最终评估指标一致,但要注意某些损失函数(如MAPE)的数学特性
-
多指标验证:不要仅依赖单一指标,建议同时监控多个评估指标
-
交叉验证:使用交叉验证来评估不同损失函数的稳定性
-
超参数调优:更换损失函数后,可能需要重新调整其他超参数
其他Darts模型的损失函数设置
对于Darts中的神经网络模型(如TiDEModel),损失函数的设置方式略有不同:
from darts.utils.losses import MapeLoss
from darts.models import TiDEModel
TiDEModel(..., loss_fn=MapeLoss())
Darts为神经网络模型提供了一系列内置的损失函数实现,使用方式更加面向对象。
总结
在Darts项目中合理设置损失函数是优化模型性能的重要环节。通过理解不同损失函数的特性及其对模型训练的影响,开发者可以针对具体业务场景做出更明智的选择。特别是在使用CatBoost等集成模型时,直接利用原生API支持的损失函数可以简化开发流程,但需要注意评估指标与损失函数的关系。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
654
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
857