在Darts项目中为CatBoost模型指定损失函数的实践指南
2025-05-27 10:40:03作者:苗圣禹Peter
背景介绍
Darts是一个强大的时间序列预测库,提供了多种机器学习模型的支持,包括CatBoost这类梯度提升树模型。在实际应用中,选择合适的损失函数对于模型性能至关重要。
CatBoost模型中的损失函数设置
在Darts中使用CatBoost模型时,可以通过模型初始化参数直接指定损失函数。例如,要使用平均绝对百分比误差(MAPE)作为损失函数,可以这样配置:
CatBoostModel(..., loss_function="MAPE")
这种设置方式利用了Darts对CatBoost原生API的封装能力,所有CatBoost支持的损失函数都可以通过这种方式指定。
默认损失函数行为
当用户不显式指定损失函数时,CatBoost模型会使用默认的损失函数。根据CatBoost的文档,回归任务的默认损失函数通常是RMSE(均方根误差)。这解释了为什么在某些情况下,不指定损失函数反而能得到更好的MAPE表现:
- RMSE对异常值更敏感,会迫使模型更关注大误差的样本
- MAPE对接近零的实际值会变得不稳定
- 不同的损失函数优化目标不同,可能导致验证集表现差异
损失函数选择的实践建议
-
理解业务需求:如果业务上更关注百分比误差,MAPE是合适的选择;如果更关注绝对误差,MAE可能更好
-
评估指标一致性:尽量使训练损失函数与最终评估指标一致,但要注意某些损失函数(如MAPE)的数学特性
-
多指标验证:不要仅依赖单一指标,建议同时监控多个评估指标
-
交叉验证:使用交叉验证来评估不同损失函数的稳定性
-
超参数调优:更换损失函数后,可能需要重新调整其他超参数
其他Darts模型的损失函数设置
对于Darts中的神经网络模型(如TiDEModel),损失函数的设置方式略有不同:
from darts.utils.losses import MapeLoss
from darts.models import TiDEModel
TiDEModel(..., loss_fn=MapeLoss())
Darts为神经网络模型提供了一系列内置的损失函数实现,使用方式更加面向对象。
总结
在Darts项目中合理设置损失函数是优化模型性能的重要环节。通过理解不同损失函数的特性及其对模型训练的影响,开发者可以针对具体业务场景做出更明智的选择。特别是在使用CatBoost等集成模型时,直接利用原生API支持的损失函数可以简化开发流程,但需要注意评估指标与损失函数的关系。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K