在Darts项目中为CatBoost模型指定损失函数的实践指南
2025-05-27 18:34:58作者:苗圣禹Peter
背景介绍
Darts是一个强大的时间序列预测库,提供了多种机器学习模型的支持,包括CatBoost这类梯度提升树模型。在实际应用中,选择合适的损失函数对于模型性能至关重要。
CatBoost模型中的损失函数设置
在Darts中使用CatBoost模型时,可以通过模型初始化参数直接指定损失函数。例如,要使用平均绝对百分比误差(MAPE)作为损失函数,可以这样配置:
CatBoostModel(..., loss_function="MAPE")
这种设置方式利用了Darts对CatBoost原生API的封装能力,所有CatBoost支持的损失函数都可以通过这种方式指定。
默认损失函数行为
当用户不显式指定损失函数时,CatBoost模型会使用默认的损失函数。根据CatBoost的文档,回归任务的默认损失函数通常是RMSE(均方根误差)。这解释了为什么在某些情况下,不指定损失函数反而能得到更好的MAPE表现:
- RMSE对异常值更敏感,会迫使模型更关注大误差的样本
- MAPE对接近零的实际值会变得不稳定
- 不同的损失函数优化目标不同,可能导致验证集表现差异
损失函数选择的实践建议
-
理解业务需求:如果业务上更关注百分比误差,MAPE是合适的选择;如果更关注绝对误差,MAE可能更好
-
评估指标一致性:尽量使训练损失函数与最终评估指标一致,但要注意某些损失函数(如MAPE)的数学特性
-
多指标验证:不要仅依赖单一指标,建议同时监控多个评估指标
-
交叉验证:使用交叉验证来评估不同损失函数的稳定性
-
超参数调优:更换损失函数后,可能需要重新调整其他超参数
其他Darts模型的损失函数设置
对于Darts中的神经网络模型(如TiDEModel),损失函数的设置方式略有不同:
from darts.utils.losses import MapeLoss
from darts.models import TiDEModel
TiDEModel(..., loss_fn=MapeLoss())
Darts为神经网络模型提供了一系列内置的损失函数实现,使用方式更加面向对象。
总结
在Darts项目中合理设置损失函数是优化模型性能的重要环节。通过理解不同损失函数的特性及其对模型训练的影响,开发者可以针对具体业务场景做出更明智的选择。特别是在使用CatBoost等集成模型时,直接利用原生API支持的损失函数可以简化开发流程,但需要注意评估指标与损失函数的关系。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248