如何提升yfinance库调用Yahoo Finance API的速率限制
2025-05-13 06:56:58作者:傅爽业Veleda
背景介绍
yfinance是一个流行的Python库,用于从Yahoo Finance获取金融市场数据。许多开发者使用它来构建金融分析工具、交易策略和投资组合管理系统。然而,在使用过程中,用户经常会遇到API调用速率限制的问题。
默认速率限制问题
Yahoo Finance对免费API用户实施了严格的调用限制。根据用户报告,免费账户通常有以下限制:
- 每分钟约100次请求
- 每天约2000次请求
- 对高频请求会实施临时封禁
这些限制对于需要大量数据的研究或交易系统来说可能远远不够。
解决方案
1. 使用缓存机制
实现本地缓存是减少API调用的有效方法:
from datetime import datetime, timedelta
import pandas as pd
import yfinance as yf
# 简单缓存实现
cache = {}
CACHE_EXPIRY = timedelta(hours=1)
def get_cached_data(symbol, period="1d"):
now = datetime.now()
if symbol in cache:
data, timestamp = cache[symbol]
if now - timestamp < CACHE_EXPIRY:
return data.copy()
# 缓存不存在或已过期
data = yf.download(symbol, period=period)
cache[symbol] = (data.copy(), now)
return data
2. 升级到Yahoo Finance Premium
Yahoo Finance提供付费订阅服务,主要优势包括:
- 更高的API调用限制(Premium用户可达5000次/天)
- 更稳定的数据连接
- 更长的历史数据访问权限
3. 实现认证请求
对于Premium用户,需要在请求中添加认证信息:
import yfinance as yf
# 设置认证cookie或token
yf.set_cookies("your_premium_cookie_here")
# 或者使用登录凭证
yf.set_credentials(username="your_username", password="your_password")
4. 请求合并与批处理
将多个请求合并为一个批次可以减少API调用次数:
# 批量获取多个股票数据
symbols = ["AAPL", "MSFT", "GOOG", "AMZN"]
data = yf.download(symbols, group_by="ticker")
5. 实现速率限制控制
即使升级了账户,仍需遵守Yahoo的速率限制:
import time
from ratelimit import limits
# 设置每分钟最多100次调用
@limits(calls=100, period=60)
def safe_yfinance_call(symbol):
return yf.Ticker(symbol).history(period="1y")
最佳实践建议
- 优先使用缓存:对不常变化的数据实施本地缓存
- 合理规划请求时间:避免在短时间内集中发送大量请求
- 使用批处理:尽可能合并多个数据请求
- 监控使用情况:记录API调用次数,避免意外超出限制
- 考虑备用数据源:在达到限制时切换到备用数据源
注意事项
即使采取了上述措施,Yahoo Finance仍可能随时调整其API政策。对于关键业务应用,建议:
- 实现优雅降级机制
- 考虑使用多个数据源
- 对重要数据实施本地持久化存储
通过合理规划和优化,可以显著提高yfinance库的使用效率,满足大多数金融数据分析需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287