Aeron项目中的SecureRandom阻塞问题分析与解决方案
问题背景
在Aeron项目的Archive组件启动过程中,存在一个潜在的性能问题:当系统熵值较低时,SecureRandom.getInstanceStrong().nextLong()调用可能会导致启动过程长时间阻塞。这个问题在Linux环境下尤为明显,特别是在某些服务大量消耗系统熵值的情况下,可能导致Archive启动延迟数分钟之久。
技术原理分析
SecureRandom是Java提供的加密强随机数生成器。在Linux系统上,getInstanceStrong()方法默认会从/dev/random设备获取随机数,而/dev/random的设计特点是它会阻塞直到收集到足够的熵值。这与非阻塞的/dev/urandom设备形成对比。
Aeron Archive在启动时使用强随机数生成器来确保某些关键操作的安全性,但在低熵环境下,这种设计选择可能会带来意想不到的性能问题。开发人员通常需要通过发送SIGQUIT信号来诊断进程卡住的原因,才能发现是SecureRandom阻塞导致的。
解决方案演进
针对这个问题,社区提出了几种解决方案:
-
临时解决方案:在系统中部署haveged这样的熵值生成守护进程,人为增加系统熵值供应。
-
代码改进方案:Aeron项目最终通过提交实现了更灵活的随机数生成器配置选项。现在可以:
- 指定使用非阻塞的原生实现(默认在非Windows平台)
- 在Windows平台上使用特定的实现
- 通过配置选择不同的RNG实现
最佳实践建议
对于使用Aeron Archive的用户,建议:
-
生产环境部署:考虑在关键系统中部署haveged或类似工具,确保系统熵值充足。
-
配置优化:根据实际安全需求评估是否必须使用强随机数生成器。在大多数场景下,非阻塞的随机数生成器可能已经足够安全。
-
监控措施:建立对系统熵值的监控,避免因熵值耗尽导致的各种服务问题。
结论
Aeron项目通过增加随机数生成器的配置灵活性,有效解决了Archive启动时可能出现的阻塞问题。这一改进体现了开源社区对实际生产环境问题的快速响应能力,也为其他可能遇到类似问题的项目提供了参考解决方案。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









