Pants构建工具2.25.0.dev4版本发布:增强环境变量支持与构建优化
Pants是一个现代化的构建系统,专注于为大型代码库提供快速、可扩展的构建体验。它采用Python编写,支持多种编程语言和工具链,通过智能的依赖分析和并行执行来加速构建过程。
本次发布的2.25.0.dev4版本带来了多项实用改进,主要集中在环境变量处理和构建流程优化方面。作为开发版本,它展示了Pants团队在持续改进构建体验方面的最新成果。
环境变量处理增强
新版本对环境变量的支持进行了显著增强。首先,现在可以在远程执行环境中使用{chroot}标记来替换环境变量值,这为分布式构建提供了更大的灵活性。其次,extra_env_vars配置现在支持fnmatch风格的glob模式匹配,使得环境变量的管理更加灵活和强大。
这些改进特别适合需要根据不同构建环境动态配置变量的场景。例如,开发者现在可以轻松地为特定模式的构建目标设置不同的环境变量,而无需为每个目标单独配置。
构建流程优化
在构建流程方面,新版本修复了无限符号链接问题,并会记录违规者,这有助于开发者更快地定位和解决构建中的文件系统问题。此外,对openDAL库的更新解决了与AWS和GitHub Actions相关的问题,提升了云环境下的构建稳定性。
元数据推断改进
PBS(可能指Pants Build System)相关的元数据现在可以直接从URL推断,这一改进简化了配置过程,减少了手动配置的工作量。这种自动推断机制使得项目配置更加简洁,同时降低了出错的可能性。
工具链更新
Python代码格式化工具Black的默认版本从23.12升级到了24.8,带来了最新的代码风格检查和格式化功能。同时,新增了对Ruff报告生成的支持,Ruff是一个快速的Python代码检查工具,这一集成使得开发者能够更方便地获取代码质量报告。
总结
Pants 2.25.0.dev4版本虽然在版本号上标记为开发版,但已经包含了许多实用的生产环境改进。从环境变量处理的增强到构建流程的优化,再到工具链的更新,这些变化都体现了Pants团队对开发者体验的持续关注。对于使用Pants进行大型项目构建的团队来说,这些改进将带来更流畅、更可靠的构建体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00