GPT-SoVITS项目中UVR5使用onnx_dereverb_By_FoxJoy模型的GPU加速问题解析
2025-05-02 00:37:55作者:温玫谨Lighthearted
在使用GPT-SoVITS项目的UVR5工具时,部分用户反馈在使用onnx_dereverb_By_FoxJoy模型进行音频处理时会出现GPU加速相关的警告信息。这些警告主要涉及ONNX Runtime的执行提供程序配置问题以及张量创建效率问题。
警告现象分析
系统会显示两类主要警告:
-
执行提供程序警告:提示指定的CUDAExecutionProvider和DmlExecutionProvider不在可用提供程序列表中,当前可用的只有AzureExecutionProvider和CPUExecutionProvider。
-
张量创建效率警告:在将numpy数组列表转换为PyTorch张量时,系统建议先将列表合并为单个numpy数组再转换,以提高效率。
根本原因
这些警告的出现表明系统未能成功启用GPU加速功能,主要原因包括:
- ONNX Runtime的GPU版本未正确安装或版本不匹配
- CUDA驱动版本与ONNX Runtime要求的版本不一致
- 系统中存在多个ONNX Runtime版本导致冲突
解决方案
1. 正确安装ONNX Runtime GPU版本
首先需要完全卸载现有的ONNX Runtime相关包,包括:
- onnxruntime
- onnxruntime-gpu
卸载后,建议检查Python的site-packages目录,手动删除任何残留的onnxruntime空文件夹。
2. 版本匹配安装
根据CUDA版本选择合适的ONNX Runtime GPU版本安装:
对于CUDA 12.x用户:
pip install onnxruntime-gpu
对于CUDA 11.x用户:
pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-11/pypi/simple/
3. 验证安装
安装完成后,可以通过以下Python代码验证GPU是否可用:
import onnxruntime as ort
print(ort.get_available_providers())
正常应显示包含'CUDAExecutionProvider'的输出。
性能优化建议
针对张量创建效率警告,建议修改代码逻辑:
- 将多个numpy数组先合并为单个数组
- 再一次性转换为PyTorch张量
这样可以显著提高数据处理效率,特别是在处理大量音频数据时。
注意事项
- 确保系统CUDA驱动版本与PyTorch和ONNX Runtime要求的版本一致
- 建议使用清洁安装方式更新显卡驱动
- 如果仅用于CPU推理,这些警告可以忽略,不影响功能使用
通过以上步骤,用户可以解决UVR5工具中使用onnx_dereverb_By_FoxJoy模型时的GPU加速问题,获得更好的音频处理性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218