Seurat项目中SCTransform处理后低表达细胞的分析与处理建议
2025-07-02 11:40:41作者:农烁颖Land
背景介绍
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的工具包,而SCTransform是其提供的一种先进的标准化和方差稳定化方法。该方法能够有效处理单细胞数据中的技术噪音和测序深度差异。然而,在实际应用中,研究人员有时会遇到处理后某些细胞出现全局低表达的情况,这需要特别关注和处理。
问题现象
在使用Seurat的SCTransform方法处理仅包含癌细胞的数据时,部分细胞在所有基因上都表现出异常低的表达水平。这些细胞在聚类分析中形成独特的簇,其标记基因主要呈现负向表达特征。通过比较转换前后的表达矩阵发现:
- 转换后这些细胞的整体表达水平显著下降
- 表达模式与原始数据中的nCount_SCT(测序深度)高度相关
- 这种现象在不同样本中重复出现
技术原理分析
SCTransform产生的校正后计数(corrected counts)代表去除了技术噪音后,假设所有细胞都按平均测序深度(中位数nCount_RNA)测序时应该观察到的表达水平。当某些细胞表现出异常高的技术噪音时,校正过程会显著降低其表达量,这可能反映了:
- 真实生物学状态变化(如细胞周期特定阶段)
- 低质量细胞或空液滴(empty droplets)
- 极端的技术偏差
解决方案建议
1. 严格的质量控制
对于nCount_RNA极低(<100)的细胞,建议直接过滤:
- 这些细胞可能未通过QC标准
- 任何标准化方法对极低深度数据都难以奏效
2. 替代分析方法
可尝试以下方法验证结果一致性:
- 使用不同的标准化策略(如scran)
- 采用伪批量(pseudobulk)分析方法(如DESeq2)
- 运行SCTransform时回归nCount_RNA
3. 高级质量控制方法
对于疑似空液滴的情况:
- 使用emptyDrops等算法自动识别和移除
- 应用环境RNA(ambient RNA)去除方法
4. 生物学解释验证
检查这些细胞是否具有特定生物学特征:
- 细胞周期基因富集分析
- 线粒体基因含量检查
- 应激反应相关基因表达
实践建议
- 在预处理阶段设置严格的QC阈值
- 对SCTransform结果进行系统检查,包括:
- 细胞表达量分布
- 技术协变量关联性
- 生物学合理性评估
- 比较不同标准化方法的结果一致性
- 对异常细胞簇进行专门的生物学和统计学验证
通过系统应用这些方法,可以有效识别和处理SCTransform后的低表达细胞问题,确保后续分析结果的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869