Spring Cloud Kubernetes 使用教程
项目介绍
Spring Cloud Kubernetes 是 Spring Cloud 项目的一个子项目,旨在将 Spring Cloud 的编程模型与 Kubernetes 的云原生特性相结合。通过 Spring Cloud Kubernetes,开发者可以更方便地在 Kubernetes 环境中使用 Spring Cloud 的功能,如服务发现、配置管理等。
项目快速启动
环境准备
- 确保你已经安装了 Kubernetes 集群。
- 安装 Spring Boot 和 Spring Cloud 的相关依赖。
创建项目
- 使用 Spring Initializr 创建一个新的 Spring Boot 项目。
- 添加以下依赖到
pom.xml文件中:
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-kubernetes</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-kubernetes-config</artifactId>
</dependency>
配置文件
在 src/main/resources 目录下创建 application.yml 文件,并添加以下配置:
spring:
application:
name: my-spring-cloud-app
cloud:
kubernetes:
config:
sources:
- name: ${spring.application.name}
namespace: default
启动应用
编写一个简单的 REST 控制器:
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class HelloController {
@GetMapping("/hello")
public String sayHello() {
return "Hello from Spring Cloud Kubernetes!";
}
}
启动应用并访问 http://localhost:8080/hello,你应该能看到 "Hello from Spring Cloud Kubernetes!" 的响应。
应用案例和最佳实践
服务发现
Spring Cloud Kubernetes 提供了与 Kubernetes 服务发现的无缝集成。通过简单的配置,你的 Spring Boot 应用可以自动发现 Kubernetes 集群中的其他服务。
配置管理
使用 Kubernetes ConfigMap 和 Secrets 来管理应用的配置。Spring Cloud Kubernetes 可以自动从这些资源中加载配置,并在配置变更时自动刷新应用。
负载均衡
结合 Spring Cloud LoadBalancer,Spring Cloud Kubernetes 可以为你的服务提供客户端负载均衡功能,确保流量均匀分布到各个服务实例。
典型生态项目
Spring Cloud Gateway
Spring Cloud Gateway 可以与 Spring Cloud Kubernetes 结合使用,提供基于 Kubernetes 的服务网关功能,实现路由、过滤和负载均衡。
Spring Cloud Sleuth
Spring Cloud Sleuth 提供了分布式追踪功能,与 Spring Cloud Kubernetes 结合使用,可以方便地追踪和监控 Kubernetes 集群中的服务调用链路。
Spring Cloud Config
虽然 Spring Cloud Kubernetes 提供了内置的配置管理功能,但在某些场景下,你可能仍然需要使用 Spring Cloud Config 来管理更复杂的配置需求。
通过以上内容,你应该能够快速上手并深入了解 Spring Cloud Kubernetes 的使用和最佳实践。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00