AzurLaneAutoScript委托功能舰船选择优化指南
2025-05-29 00:51:58作者:农烁颖Land
问题背景
在AzurLaneAutoScript自动化脚本的使用过程中,许多用户反馈委托功能存在舰船选择不合理的问题。主要表现为脚本在选择执行委托任务的舰船时,即使船坞中存在符合条件的空闲高等级舰船,仍会优先选择低等级的白蓝品质舰船,这不仅影响委托任务的完成效率,严重时还会导致脚本运行卡死。
问题根源分析
经过技术分析,发现该问题主要由以下因素导致:
- 品质筛选机制:原版自动选择算法存在设计缺陷,默认不会选择金色和紫色品质的高等级舰船
- 优先级逻辑:脚本在选择舰船时没有充分考虑舰船等级和品质的优先级关系
- 资源分配:低等级舰船被频繁选择会导致后续委托任务可用的高等级舰船不足
解决方案
方案一:手动指定舰船
- 在配置文件中固定指定用于委托任务的舰船
- 选择几艘专门用于委托的舰船,避免与主力舰队冲突
- 建议选择蓝色品质的舰船,确保它们能被脚本正常识别和使用
方案二:优化选择算法
- 修改舰船选择逻辑,按品质倒序选择(金色>紫色>蓝色>白色)
- 在同品质舰船中优先选择等级较高的
- 设置选择范围,避免一次性选择过多舰船导致性能问题
方案三:舰船培养策略
- 专门培养几艘蓝色品质舰船用于委托任务
- 将这些舰船提升到适当等级(建议30级以上)
- 避免将这些舰船编入主力舰队,确保它们随时可用于委托
实施建议
对于普通用户,建议采用方案一和方案三的组合:
- 在游戏内培养3-5艘专门用于委托的蓝色品质舰船
- 将这些舰船提升至30-50级
- 在脚本配置中指定这些舰船为委托专用
- 定期检查这些舰船的状态,确保它们保持空闲
对于高级用户,可以尝试修改脚本的舰船选择算法,按照品质和等级进行优化排序,同时设置合理的选择范围限制。
注意事项
- 确保委托专用舰船不要被其他功能占用
- 定期检查舰船状态,避免因疲劳度影响委托效率
- 对于长时间委托任务,建议使用较高等级的舰船
- 新获得的舰船可能需要手动配置后才能被脚本识别使用
通过以上优化措施,可以显著提高AzurLaneAutoScript委托功能的稳定性和效率,避免因舰船选择不当导致的脚本卡死问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178