在kube-hetzner项目中配置Cilium Gateway API与Hetzner负载均衡器的集成
背景介绍
kube-hetzner是一个使用Terraform在Hetzner Cloud上部署Kubernetes集群的开源项目。当用户希望使用Cilium的Gateway API功能替代Kubernetes原生的Ingress控制器时,会遇到Hetzner Cloud负载均衡器无法自动创建和配置的问题。
问题本质
Cilium Gateway API与传统Ingress控制器的工作机制有根本区别。传统Ingress控制器通常会与云提供商的API交互来自动创建负载均衡器资源,而Cilium Gateway API不依赖这种控制器机制,因此需要额外的配置才能与Hetzner Cloud的负载均衡器服务集成。
关键发现
经过深入排查,发现问题根源在于缺少必要的Custom Resource Definitions(CRDs)。这些CRDs是Cilium Gateway API正常运行的前提条件,必须在安装Cilium之前就部署到集群中。
解决方案
1. 安装必要的Gateway API CRDs
在部署Cilium之前,需要先安装以下CRD资源:
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: gatewayclasses.gateway.networking.k8s.io
spec:
# 具体规范内容
类似的CRD还需要为Gateways、HTTPRoutes、ReferenceGrants等资源定义。这些CRD可以从Gateway API项目的官方仓库获取。
2. 配置Cilium Helm值
以下是推荐的Cilium Helm配置,特别针对kube-hetzner环境进行了优化:
ipam:
mode: kubernetes
k8s:
requireIPv4PodCIDR: true
kubeProxyReplacement: true
l7Proxy: true
routingMode: "native"
ipv4NativeRoutingCIDR: "10.42.0.0/16"
loadBalancer:
acceleration: native
gatewayAPI:
enabled: true
3. 网络模式选择
在Hetzner Cloud环境中,建议使用"native"路由模式而非隧道模式,这样可以获得更好的网络性能。同时需要正确设置集群的Pod CIDR范围。
4. 负载均衡器集成
虽然Cilium Gateway API不会自动创建Hetzner负载均衡器,但可以通过以下方式实现集成:
- 手动创建Hetzner负载均衡器
- 将负载均衡器指向运行Cilium的节点
- 配置适当的健康检查端点
实施建议
对于kube-hetzner用户,建议通过修改项目的Terraform模板,在集群初始化阶段就添加CRD安装步骤。可以将CRD安装作为pre-install阶段的任务,确保在Cilium部署前所有必要的API资源都已就绪。
性能优化
在Hetzner Cloud环境中使用Cilium时,还可以考虑以下优化措施:
- 启用eBPF加速的数据路径
- 配置适当的MTU值(建议1450)
- 启用Hubble网络观测功能
- 使用XDP加速负载均衡性能
总结
通过正确配置CRDs和Cilium参数,可以在kube-hetzner部署的Kubernetes集群中实现Cilium Gateway API与Hetzner负载均衡器的协同工作。这种配置虽然比传统Ingress控制器需要更多手动步骤,但能提供更灵活的服务网格功能和更好的网络性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00