在kube-hetzner项目中配置Cilium Gateway API与Hetzner负载均衡器的集成
背景介绍
kube-hetzner是一个使用Terraform在Hetzner Cloud上部署Kubernetes集群的开源项目。当用户希望使用Cilium的Gateway API功能替代Kubernetes原生的Ingress控制器时,会遇到Hetzner Cloud负载均衡器无法自动创建和配置的问题。
问题本质
Cilium Gateway API与传统Ingress控制器的工作机制有根本区别。传统Ingress控制器通常会与云提供商的API交互来自动创建负载均衡器资源,而Cilium Gateway API不依赖这种控制器机制,因此需要额外的配置才能与Hetzner Cloud的负载均衡器服务集成。
关键发现
经过深入排查,发现问题根源在于缺少必要的Custom Resource Definitions(CRDs)。这些CRDs是Cilium Gateway API正常运行的前提条件,必须在安装Cilium之前就部署到集群中。
解决方案
1. 安装必要的Gateway API CRDs
在部署Cilium之前,需要先安装以下CRD资源:
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: gatewayclasses.gateway.networking.k8s.io
spec:
# 具体规范内容
类似的CRD还需要为Gateways、HTTPRoutes、ReferenceGrants等资源定义。这些CRD可以从Gateway API项目的官方仓库获取。
2. 配置Cilium Helm值
以下是推荐的Cilium Helm配置,特别针对kube-hetzner环境进行了优化:
ipam:
mode: kubernetes
k8s:
requireIPv4PodCIDR: true
kubeProxyReplacement: true
l7Proxy: true
routingMode: "native"
ipv4NativeRoutingCIDR: "10.42.0.0/16"
loadBalancer:
acceleration: native
gatewayAPI:
enabled: true
3. 网络模式选择
在Hetzner Cloud环境中,建议使用"native"路由模式而非隧道模式,这样可以获得更好的网络性能。同时需要正确设置集群的Pod CIDR范围。
4. 负载均衡器集成
虽然Cilium Gateway API不会自动创建Hetzner负载均衡器,但可以通过以下方式实现集成:
- 手动创建Hetzner负载均衡器
- 将负载均衡器指向运行Cilium的节点
- 配置适当的健康检查端点
实施建议
对于kube-hetzner用户,建议通过修改项目的Terraform模板,在集群初始化阶段就添加CRD安装步骤。可以将CRD安装作为pre-install阶段的任务,确保在Cilium部署前所有必要的API资源都已就绪。
性能优化
在Hetzner Cloud环境中使用Cilium时,还可以考虑以下优化措施:
- 启用eBPF加速的数据路径
- 配置适当的MTU值(建议1450)
- 启用Hubble网络观测功能
- 使用XDP加速负载均衡性能
总结
通过正确配置CRDs和Cilium参数,可以在kube-hetzner部署的Kubernetes集群中实现Cilium Gateway API与Hetzner负载均衡器的协同工作。这种配置虽然比传统Ingress控制器需要更多手动步骤,但能提供更灵活的服务网格功能和更好的网络性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00