Bee-Agent-Framework 公开API的Python化改进实践
在开源项目Bee-Agent-Framework的开发过程中,团队对公开API的设计进行了深入讨论和优化。本文将详细介绍这次API改进的技术背景、设计思路和具体实现方案。
API设计问题分析
在早期版本中,框架的公开API设计大量使用了BaseModel输入对象。这种设计虽然有利于类型检查和数据传递,但对终端用户来说却显得不够友好。典型的代码示例如下:
llm = ChatModel.from_name("ollama:granite3.1-dense:8b")
agent = BeeAgent(
bee_input=BeeInput(
llm=llm,
tools=[OpenMeteoTool(), DuckDuckGoSearchTool(max_results=3)],
memory=UnconstrainedMemory()
)
)
response = await agent.run(
run_input=BeeRunInput(prompt="What's the current weather in Las Vegas?")
).observe(lambda emitter: emitter.on("success", lambda data, event: print(data.result)))
这种设计存在几个明显问题:
- 需要用户显式创建中间输入对象
- 代码嵌套层级过深
- API调用不够直观
改进方案设计
经过团队讨论,决定采用"参数展开"的方案来简化公开API。改进后的代码示例如下:
llm = ChatModel.from_name("ollama:granite3.1-dense:8b")
agent = BeeAgent(llm=llm, tools=[OpenMeteoTool(), DuckDuckGoSearchTool(max_results=3)], memory=UnconstrainedMemory())
response = await agent.run("What's the current weather in Las Vegas?").observe(
lambda emitter: emitter.on("success", lambda data, event: print(data.result)))
这种改进带来了以下优势:
- 移除了不必要的中间对象创建
- 减少了代码嵌套层级
- 使API调用更加直观和Pythonic
具体实现策略
在实现过程中,团队制定了以下具体策略:
-
API分类处理:将API分为三类处理
- 必须修改的公开API(如BaseAgent.run、BeeAgent初始化等)
- 可选的公开API(如Emitter相关方法)
- 内部API(如Runner基础设施)
-
输入对象内部化:在公开API内部处理输入对象的创建,而不是暴露给用户
-
渐进式改进:每个API的修改都单独提交,便于回滚和问题定位
技术决策与权衡
在改进过程中,团队面临几个关键决策点:
-
Runner API的处理:经过讨论,Runner基础设施被视为内部实现细节,不应暴露给终端用户。因此移除了相关示例代码。
-
Emitter API的特殊性:由于Emitter涉及事件处理机制,其改进被单独规划。
-
输入对象与Schema的区分:明确了输入对象(用于API参数传递)和Schema(用于数据验证)的不同用途,考虑将后者重命名以避免混淆。
经验总结
这次API改进实践提供了几个有价值的经验:
-
API设计应以用户体验为先:类型安全固然重要,但不应该牺牲API的易用性。
-
合理划分公开与内部API:清晰的边界定义有助于保持框架的整洁性。
-
渐进式改进降低风险:通过小步提交的方式,可以有效地控制修改风险。
-
命名一致性很重要:区分输入对象和Schema的命名约定能减少用户困惑。
这次改进使Bee-Agent-Framework的API更加符合Python社区的惯用风格,提升了开发者的使用体验,同时也为框架的长期演进奠定了良好的基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00