TRL项目中的GRPO梯度累积训练技术解析
2025-05-17 20:37:45作者:邬祺芯Juliet
引言
在强化学习模型训练过程中,梯度累积是一种常见的技术优化手段。本文将深入探讨TRL(Transformer Reinforcement Learning)项目中GRPO(Gradient-based Reward Policy Optimization)算法的梯度累积实现方式,特别是针对多生成样本情况下的训练策略。
GRPO梯度累积的基本原理
GRPO算法在训练过程中需要为每个输入提示(prompt)生成多个输出样本(completions)。当设置num_generations=4时,系统会为每个提示生成4个不同的输出样本。梯度累积的实现方式与这些生成样本的处理密切相关。
标准训练流程
在标准配置下(per_device_train_batch_size=4, gradient_accumulation_steps=1):
- 模型为每个提示生成4个输出样本
- 计算每个样本的奖励和优势值
- 一次性计算整个批次的损失函数
- 执行梯度更新
梯度累积训练流程
当采用梯度累积策略(per_device_train_batch_size=2, gradient_accumulation_steps=2)时:
- 模型为每个提示生成4个输出样本
- 将样本分为两组(每组2个样本)
- 对第一组样本计算损失和梯度(但不更新模型)
- 对第二组样本计算损失并累积梯度
- 执行梯度更新
技术实现细节
梯度累积与VRAM优化
有开发者提出是否可以分阶段生成样本以节省显存(VRAM)的方案:
- 首先生成2个样本并计算梯度
- 丢弃这些样本后再生成另外2个样本
- 再次计算梯度并累积
- 最后更新模型
然而,这种方案在GRPO中并不可行,原因在于:
- GRPO的目标函数需要在整个批次(4个样本)上计算均值和标准差
- 如果无法同时访问全部样本,则无法正确计算这些统计量
- 显存消耗的峰值出现在前向和后向传播阶段,输入存储本身占用较少
等效训练配置
从训练效果来看,以下两种配置是等效的:
num_generations=4, per_device_train_batch_size=4, gradient_accumulation_steps=1num_generations=4, per_device_train_batch_size=2, gradient_accumulation_steps=2
这两种配置都能确保每个优化步骤基于4个样本的完整信息,只是梯度计算的组织方式不同。
实际应用建议
在实际应用中,开发者应该:
- 根据可用显存选择合适的批次大小
- 理解梯度累积步骤与批次大小的关系
- 注意GRPO算法对完整批次统计量的依赖特性
- 优先考虑使用等效的简单配置(
batch_size=4)而非复杂梯度累积
结论
TRL项目中的GRPO实现提供了灵活的梯度累积选项,但开发者需要理解其背后的统计计算要求。在大多数情况下,直接使用完整的批次大小配置更为简单可靠。梯度累积的主要价值在于处理显存限制,而非优化训练过程本身。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355