NVlabs/Sana项目中基于余弦相似度的深度剪枝技术解析
2025-06-16 05:02:13作者:侯霆垣
深度神经网络模型剪枝是模型压缩领域的重要技术手段。在NVlabs发布的Sana 1.5项目中,研究人员创新性地提出了基于块间特征余弦相似度的深度剪枝方法,本文将从技术原理到实践应用进行全面剖析。
核心算法原理
该方法的核心思想是通过计算相邻Transformer块输入输出特征的余弦相似度来评估块的重要性。具体算法流程如下:
- 特征采集阶段:在前向传播过程中,记录每个Transformer块的输入特征并存储在字典结构中
- 相似度计算:对相邻块的特征进行L2归一化处理后,计算它们的余弦相似度
- 重要性评分:将相似度转换为重要性分数,公式为:
重要性 = 1 - |余弦相似度|
这种设计的理论基础是:如果某Transformer块对特征空间的变换作用显著(即输入输出特征差异大),则表明该块在模型中承担重要功能;反之则可能冗余。
关键技术实现
参考项目中的实现代码,我们可以观察到几个关键细节:
- 特征处理:所有特征统一转换为float32精度并转移到GPU计算
- 跨块采样:通过interval参数控制计算跨度,实现灵活的计算粒度调整
- 批量处理:对特征张量的最后一个维度进行整体相似度计算,再取均值作为最终评分
特别值得注意的是绝对值处理环节,这确保了无论是正向还是负向的强相关性都会被识别为低重要性,符合Transformer架构的特性。
多模态架构的适配挑战
在实际应用中发现,该方法在MMDiT等多模态架构中面临特殊挑战:
- 模态干扰问题:文本和视觉模态的特征激活模式存在显著差异
- 评分冲突:单一模态的低重要性可能被另一模态的高活跃度掩盖
- 评估困境:传统方法难以直接识别对双模态都非关键的冗余块
针对这些问题,技术社区提出了改进思路:
- 分模态独立计算重要性分数
- 采用加权融合策略平衡双模态影响
- 结合人工可视化分析进行验证性剪枝
工程实践建议
基于项目经验,我们总结出以下实践要点:
- 评估策略:对于关键模型,建议结合人工验证(如逐块跳过测试)
- 阈值选择:不宜采用固定阈值,而应考虑分数分布特征
- 渐进式剪枝:推荐采用迭代式剪枝-微调循环
- 架构适配:针对特殊架构需要调整特征采集点(如多头注意力前后)
该方法虽然源自Sana项目,但其核心思想可推广到各类基于Transformer的架构,为模型压缩领域提供了新的技术思路。随着大模型时代的到来,此类自动化剪枝技术将发挥越来越重要的作用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100