DynSLAM 开源项目使用教程
1. 项目介绍
DynSLAM 是一个基于 C++ 编写的稠密 SLAM(Simultaneous Localization and Mapping,同步定位与建图)系统。该项目在 InfiniTAM 的基础上进行了扩展,增加了对立体输入、户外操作、体素垃圾回收以及动态物体(如汽车)重建的支持。DynSLAM 主要用于动态环境中的同时定位与建图,能够分别重建静态环境和动态物体。
DynSLAM 是由 Andrei Bârsan 在 ETH Zurich 的计算机视觉与几何组完成的硕士论文项目,并被 ICRA 2018 会议接受,相关论文为《Robust Dense Mapping for Large-Scale Dynamic Environments》。
2. 项目快速启动
2.1 环境准备
DynSLAM 项目依赖于 OpenCV 2.4.9 和 CUDA 8。此外,还需要安装 Docker 和 nvidia-docker 用于数据预处理。以下是 Ubuntu 18.04 下的安装步骤:
# 安装 OpenCV 2.4.9 和 CUDA 8
sudo apt-get install libxmu-dev libxi-dev freeglut3 freeglut3-dev libglew-dev glew-utils libpthread-stubs0-dev binutils-dev libgflags-dev libpng++-dev libeigen3-dev
# 安装 Docker 和 nvidia-docker
sudo apt-get install docker.io
sudo apt-get install nvidia-docker2
2.2 克隆项目
git clone --recursive https://github.com/AndreiBarsan/DynSLAM.git
cd DynSLAM
2.3 构建项目
# 构建 Pangolin
cd src/Pangolin && mkdir build && cd build && cmake .. && make -j$(nproc)
# 构建 DynSLAM
cd ../../.. && mkdir build && cd build && cmake .. && make -j$(nproc)
2.4 运行示例
DynSLAM 提供了一个预处理好的 KITTI Odometry 序列示例,可以直接运行:
# 创建输出目录
mkdir -p csv/
# 运行 DynSLAM
build/DynSLAM --use_dispnet --dataset_root=path/to/extracted/archive --dataset_type=kitti-odometry
3. 应用案例和最佳实践
3.1 动态环境中的 SLAM
DynSLAM 主要应用于动态环境中的 SLAM,例如在城市交通场景中,能够同时定位车辆并重建周围环境,同时区分并重建移动的车辆。
3.2 数据预处理
DynSLAM 需要预处理的数据包括实例感知语义分割和密集深度图。可以使用提供的脚本对 KITTI Tracking 数据集进行预处理:
# 下载 KITTI Tracking 数据集
./scripts/download_kitti_tracking.sh
# 预处理数据
./scripts/preprocess_kitti_tracking.sh
4. 典型生态项目
4.1 InfiniTAM
DynSLAM 基于 InfiniTAM 进行扩展,InfiniTAM 是一个轻量级的实时 SLAM 系统,主要用于室内环境的稠密重建。
4.2 Multi-task Network Cascades
DynSLAM 使用 Multi-task Network Cascades 进行图像语义分割,以识别输入视频中的汽车等动态物体。
4.3 Caffe
DynSLAM 使用了经过修改的 Caffe 框架,用于支持 Multi-task Network Cascades 的训练和推理。
通过以上步骤,您可以快速上手 DynSLAM 项目,并在动态环境中进行 SLAM 实验。
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie057毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】Python00
热门内容推荐
最新内容推荐
项目优选









