DocETL项目中LLM代理任务的策略模式重构实践
2025-07-08 18:26:05作者:翟江哲Frasier
背景与问题分析
在现代ETL(Extract-Transform-Load)系统中,LLM(大语言模型)正被越来越多地用于优化查询执行计划。在DocETL项目中,我们观察到多个优化器类(如MapOptimizer、ReduceOptimizer和JoinOptimizer)都嵌入了大量与LLM交互的重复代码模式。这种实现方式虽然功能完整,但存在几个显著问题:
- 代码重复:每个优化任务都重复实现相似的LLM交互流程
- 紧耦合:优化器业务逻辑与LLM交互细节深度耦合
- 维护困难:修改LLM交互方式需要多处同步变更
- 测试复杂:难以对LLM交互逻辑进行独立测试
现有实现的问题模式
当前实现中,每个LLM代理任务都遵循相似的7步模式:
- 任务特定上下文准备
- 代理角色定义
- 详细用户提示构建
- 输出模式定义
- LLM客户端调用
- 响应解析与提取
- 任务特定验证/重试
以JoinOptimizer中的_blocking_rules生成为例,这些步骤都直接嵌入在优化器方法中,导致方法臃肿且难以维护。
策略模式解决方案
我们采用策略模式对这部分代码进行重构,核心思想是将每个LLM代理任务封装为独立的策略类。具体实现包括:
1. 抽象基类设计
首先定义LLMAgentTask抽象基类,提供统一的接口:
class LLMAgentTask(ABC):
def __init__(self, llm_client: LLMClient, console: Console):
self.llm_client = llm_client
self.console = console
@abstractmethod
def execute(self, *args, **kwargs) -> Any:
"""执行特定的LLM代理任务"""
2. 具体策略实现
为每个LLM代理任务创建具体策略类。以生成阻塞规则为例:
class GenerateBlockingRuleTask(LLMAgentTask):
SYSTEM_PROMPT = "您是实体解析规则生成专家..."
OUTPUT_SCHEMA = {...}
def _build_user_prompt(self, sample_datas, blocking_keys, comparison_prompt):
"""封装提示构建逻辑"""
return f"分析这些样本比较..."
def execute(self, sample_datas, blocking_keys, comparison_prompt, max_retries):
"""完整封装7步交互流程"""
# 实现细节...
3. 优化器重构
优化器类只需实例化并使用相应策略:
def _generate_blocking_rules(self, blocking_keys, input_data, comparisons):
sample_datas = self._sample_comparison_data(input_data, comparisons)
rule_generator = GenerateBlockingRuleTask(self.llm_client, self.console)
blocking_rule = rule_generator.execute(...)
return [blocking_rule] if blocking_rule else []
架构优势与实施效果
这种重构带来了多方面改进:
- 关注点分离:优化器专注于业务逻辑,策略类处理LLM交互细节
- 代码复用:公共LLM交互模式被统一封装
- 易于测试:每个策略类可独立测试
- 扩展性强:新增LLM任务只需添加新策略类
- 维护简单:修改特定任务的LLM交互不影响其他部分
实践经验与建议
在实际重构过程中,我们总结了以下经验:
- 上下文传递:策略类可能需要访问优化器的部分上下文,需设计合理的参数传递机制
- 错误处理:将重试逻辑封装在策略类中,保持优化器代码简洁
- 提示工程:将系统提示和用户提示模板集中管理,便于统一调整
- 输出验证:每个策略类应包含针对其任务的特定输出验证逻辑
未来展望
虽然策略模式解决了当前问题,但随着系统演进,我们还可以考虑:
- 引入LLM交互框架,进一步标准化常见模式
- 开发提示模板管理系统
- 实现LLM交互的监控和性能分析
- 探索自动生成策略类的可能性
这种基于策略模式的重构不仅提升了DocETL项目的代码质量,也为其他类似系统中LLM集成提供了可借鉴的架构模式。通过清晰的职责划分和模块化设计,系统在面对不断变化的LLM技术和业务需求时,将展现出更强的适应性和可维护性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
253

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
347
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0