Milvus流式节点长时间未写入数据后查询卡顿问题解析
问题背景
在Milvus分布式向量数据库的集群部署环境中,当使用流式节点(streamingNode)配合Pulsar消息队列时,发现了一个关键的性能问题。具体表现为:当某个集合(collection)长时间没有新数据写入后,如果此时加载该集合并执行查询操作,系统会出现卡顿现象,查询请求无法正常完成。
问题现象分析
该问题在以下典型场景中复现:
- 创建一个新集合,插入数据后执行flush操作建立索引并加载集合
- 并发执行多种操作:数据插入、删除、flush、查询、搜索以及场景搜索测试
- 测试完成后,某些集合中仍保留有数据
- 当尝试加载这些长时间未写入的集合并执行查询时,系统出现卡顿
技术原理剖析
问题的根本原因与Milvus的WriteAheadBuffer(WAL)机制有关:
-
WriteAheadBuffer的过期机制:系统会定期清理WriteAheadBuffer以减少内存占用。当没有新的追加操作时,WAL不会将消息写入底层日志,而只是更新WriteAheadBuffer中的最后一条消息。
-
Catchup Scanner的读取机制:当Catchup Scanner读取到底层日志的最后一条消息,而WriteAheadBuffer又清理了底层日志的最后一条消息时,Scanner将无法追上WriteAheadBuffer的进度。
-
阻塞现象:这种情况下,Scanner的消费过程会被永久阻塞,直到有新的消息写入系统。
解决方案
针对这一问题,开发团队提出了两个关键修复措施:
-
保留关键TimeTick消息:修改WriteAheadBuffer的清理策略,确保不会清除最后一条已持久化的TimeTickMessage。在缓冲区中保留两条关键消息:最后一条已持久化的TimeTick消息和最新的(未持久化的)TimeTick消息。
-
处理StartAfter消费策略:考虑到订阅者可能采用StartAfter策略消费WAL日志,修复了Catchup Scanner在这种情况下无法看到最后一条TimeTick消息ID的问题,确保Scanner能够正确追上WriteAheadBuffer的进度。
影响与验证
该修复已在Milvus的master分支版本(master-20250417-511c4d37-amd64)中实现。经过测试验证,修复后系统在长时间未写入数据的集合上执行查询操作时不再出现卡顿现象,系统稳定性和可靠性得到了显著提升。
技术启示
这一问题的解决过程展示了分布式系统中WAL机制的重要性以及其潜在的性能陷阱。在实际应用中,需要特别注意:
- 消息队列的消费进度管理
- 缓冲区清理策略与系统一致性的平衡
- 长时间空闲状态下的系统行为处理
这些经验对于设计高可靠的分布式存储系统具有重要的参考价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00