Unsloth项目中Llama3.2微调时的损失函数问题解析
2025-05-03 17:10:01作者:尤辰城Agatha
在使用Unsloth项目对Llama3.2模型进行微调时,开发者可能会遇到一个常见的错误:当不使用train_on_responses_only
函数时,模型训练会报错提示"模型未从输入返回损失值"。这个问题看似简单,但背后涉及了数据处理和损失计算的关键机制。
问题现象
当开发者尝试微调Llama3.2模型时,如果使用了train_on_responses_only
函数,训练可以正常进行。但一旦移除这个函数,就会遇到以下错误提示:
ValueError: The model did not return a loss from the inputs, only the following keys: logits. For reference, the inputs it received are input_ids,attention_mask.
这个错误表明模型的前向传播只返回了logits,而没有计算损失值。
根本原因
问题的根源在于数据处理流程。在Unsloth项目中,默认的数据处理方式与Llama3.2模型的预期输入格式存在不匹配。具体来说:
- 当使用
train_on_responses_only
函数时,它会自动处理数据格式,确保模型能够正确计算损失 - 不使用该函数时,需要手动调整数据处理流程,特别是需要移除
DataCollatorForSeq2Seq
这个数据收集器
解决方案
解决这个问题的正确方法是注释掉DataCollatorForSeq2Seq
的使用。这个数据收集器通常用于序列到序列任务,但在Llama3.2的微调场景下,它会干扰模型正常的损失计算流程。
正确的做法是:
# 注释掉这行代码
# data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer)
技术原理
这个问题的本质在于损失掩码的计算。在语言模型微调中,我们通常只需要计算响应部分的损失,而忽略指令部分的token。train_on_responses_only
函数会自动处理这一点,而DataCollatorForSeq2Seq
则采用了不同的处理逻辑,导致损失计算失败。
Llama3.2这类自回归语言模型期望输入数据包含完整的对话上下文,但损失计算时只需要考虑模型生成的部分。当数据处理流程不匹配时,模型无法正确识别哪些部分需要计算损失,从而导致上述错误。
最佳实践
对于Unsloth项目的使用者,建议:
- 明确你的微调目标:如果只需要微调响应部分,使用
train_on_responses_only
是最简单的方式 - 如果需要自定义训练流程,确保数据处理与模型预期匹配
- 理解不同数据收集器的作用,选择适合你任务的那个
- 在遇到类似错误时,首先检查数据处理流程,特别是损失掩码相关的部分
通过理解这些原理,开发者可以更灵活地使用Unsloth项目进行模型微调,而不仅限于预设的流程。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287