PiPiName 项目使用教程
2024-09-17 07:58:59作者:晏闻田Solitary
1. 项目目录结构及介绍
PiPiName 项目的目录结构如下:
PiPiName/
├── data/
├── LICENSE
├── README.md
├── config.py
├── main.py
├── name.py
├── name_set.py
├── stroke_number.py
└── wuge.py
目录结构介绍
- data/: 存放项目所需的数据文件,如词库、诗文等。
- LICENSE: 项目的开源许可证文件,本项目使用 GPL-3.0 许可证。
- README.md: 项目的说明文档,包含项目的基本介绍、使用方法等。
- config.py: 项目的配置文件,用于设置词库、姓氏、笔画数等参数。
- main.py: 项目的启动文件,运行此文件可以生成符合条件的名字。
- name.py: 处理名字生成的核心逻辑文件。
- name_set.py: 处理名字集合的相关逻辑文件。
- stroke_number.py: 处理笔画数的相关逻辑文件。
- wuge.py: 处理三才五格的相关逻辑文件。
2. 项目的启动文件介绍
main.py
main.py 是 PiPiName 项目的启动文件,运行此文件可以生成符合条件的名字。以下是 main.py 的主要功能介绍:
- 导入模块: 导入所需的模块和配置文件。
- 配置参数: 从
config.py中读取配置参数,如词库选择、姓氏、笔画数等。 - 生成名字: 根据配置参数生成符合条件的名字,并将结果输出到文件或打印到控制台。
启动方法
在项目根目录下运行以下命令启动项目:
python main.py
3. 项目的配置文件介绍
config.py
config.py 是 PiPiName 项目的配置文件,用于设置词库、姓氏、笔画数等参数。以下是 config.py 的主要配置项介绍:
- name_source: 选择词库,可选值为
0(默认)、1(诗经)、2(楚辞)、3(论语)、4(周易)、5(唐诗)、6(宋诗)、7(宋词)。 - last_name: 设置姓氏,仅支持单姓。
- dislike_words: 设置不想要的字,结果中不会出现这些字。
- min_stroke_count: 设置最小笔画数。
- max_stroke_count: 设置最大笔画数。
- allow_general: 是否允许使用中吉配置的名字。
- name_validate: 是否筛选名字,仅输出名字库中存在的名字。
- gender: 是否筛选性别,可选值为
男、女,空则不筛选。 - check_name: 填入姓名查看三才五格配置,仅支持单姓复名。
- check_name_resource: 是否显示名字来源。
配置示例
# 选择词库
name_source = 0
# 姓氏
last_name = "张"
# 不想要的字
dislike_words = list("")
# 最小笔画数
min_stroke_count = 3
# 最大笔画数
max_stroke_count = 25
# 允许使用中吉
allow_general = False
# 是否筛选名字
name_validate = True
# 是否筛选性别
gender = ""
# 填入姓名查看三才五格配置
check_name = ""
# 是否显示名字来源
check_name_resource = True
通过修改 config.py 中的配置项,可以自定义生成名字的条件和规则。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178