基于Fuzzy_Diabetes项目的糖尿病诊断模型构建与比较
2025-06-19 00:21:04作者:盛欣凯Ernestine
项目概述
本项目实现了一个完整的糖尿病诊断模型构建流程,结合了传统机器学习方法(KNN、SVM、随机森林)和自适应神经模糊推理系统(ANFIS)。通过对比分析不同模型在糖尿病数据集上的表现,为医疗诊断提供了一种有效的辅助决策方案。
环境准备
在开始项目前,需要安装以下必要的Python库:
!pip install scikit-learn pandas matplotlib joblib sanfis
这些库包含了数据处理、机器学习模型实现和可视化所需的工具。
数据预处理
数据加载与清洗
# 加载数据集
df = pd.read_csv("diabetes.csv")
# 处理缺失值(将0替换为列均值)
zero_fill_cols = ['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
for col in zero_fill_cols:
df[col] = df[col].replace(0, np.nan)
df[col] = df[col].fillna(df[col].mean())
# 去除异常值
df = df[(df['BMI'] <= 67) & (df['Insulin'] <= 846)]
特征选择与标准化
根据医学研究,我们选择了以下四个关键特征:
- 怀孕次数(Pregnancies)
- 葡萄糖浓度(Glucose)
- 身体质量指数(BMI)
- 糖尿病谱系功能(DiabetesPedigreeFunction)
features = ["Pregnancies", "Glucose", "BMI", "DiabetesPedigreeFunction"]
X = df[features].values
y = df["Outcome"].values
# 数据标准化
scaler = StandardScaler()
X_std = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
X_std, y, test_size=0.3, random_state=42, stratify=y
)
传统机器学习模型构建
K最近邻(KNN)模型
knn = KNeighborsClassifier(n_neighbors=7, weights='distance')
knn.fit(X_train, y_train)
joblib.dump(knn, "model/knn_model.pkl")
支持向量机(SVM)模型
svm = SVC(kernel='rbf', C=1, gamma='auto', probability=True, random_state=42)
svm.fit(X_train, y_train)
joblib.dump(svm, "model/svm_model.pkl")
随机森林(RF)模型
rf = RandomForestClassifier(n_estimators=150, max_depth=7, random_state=42)
rf.fit(X_train, y_train)
joblib.dump(rf, "model/rf_model.pkl")
自适应神经模糊推理系统(ANFIS)实现
ANFIS结合了神经网络的学习能力和模糊系统的推理能力,特别适合处理医学诊断这类模糊性问题。
# 定义隶属函数参数
MEMBFUNCS = [
{'function': 'gaussian', 'n_memb': 7,
'params': {'mu': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'sigma': {'value': [0.8]*7, 'trainable': True}}},
{'function': 'bell', 'n_memb': 7,
'params': {'c': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'a': {'value': [2.0]*7, 'trainable': False},
'b': {'value': [3.0]*7, 'trainable': False}}},
{'function': 'gaussian', 'n_memb': 7,
'params': {'mu': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'sigma': {'value': [0.8]*7, 'trainable': True}}},
{'function': 'sigmoid', 'n_memb': 7,
'params': {'c': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'gamma': {'value': [-3.0, -2.0, -1.0, 0, 1.0, 2.0, 3.0], 'trainable': True}}}
]
# 模型训练
model = SANFIS(membfuncs=MEMBFUNCS, n_input=4, scale='Std')
optimizer = torch.optim.AdamW(model.parameters(), lr=0.002)
loss_fn = torch.nn.MSELoss(reduction='mean')
history = model.fit(train_data=[X_train_torch, y_train_torch],
valid_data=[X_test_torch, y_test_torch],
optimizer=optimizer,
loss_function=loss_fn,
epochs=1000)
# 模型保存
torch.save(model.state_dict(), 'model/anfis_model.pt')
模型性能比较
我们对四种模型在测试集上的表现进行了全面评估,使用准确率(Accuracy)、F1分数和AUC三个指标:
| 模型 | 准确率 | F1分数 | AUC |
|---|---|---|---|
| KNN | 0.710 | 0.544 | 0.786 |
| SVM | 0.723 | 0.522 | 0.770 |
| RF | 0.745 | 0.593 | 0.815 |
| ANFIS | 0.758 | 0.606 | 0.827 |
从结果可以看出:
- ANFIS模型在所有指标上都表现最佳,特别是在AUC指标上达到0.827
- 随机森林作为传统机器学习方法中的最佳模型,表现接近ANFIS
- SVM虽然准确率略高于KNN,但在F1分数上表现最差
结论与建议
- 模型选择:对于糖尿病诊断这类医学问题,ANFIS因其能够处理模糊性和不确定性,表现出最佳性能
- 特征工程:BMI和葡萄糖浓度是最重要的两个预测指标,这与医学常识一致
- 实际应用:建议将ANFIS模型集成到医疗辅助诊断系统中,但需要结合医生的专业判断
- 改进方向:可以尝试增加更多临床特征,或结合深度学习模型进一步提升性能
本项目的完整实现展示了从数据预处理到模型构建、评估的全流程,为医疗AI应用提供了一个可复用的框架。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350