基于Fuzzy_Diabetes项目的糖尿病诊断模型构建与比较
2025-06-19 10:19:09作者:盛欣凯Ernestine
项目概述
本项目实现了一个完整的糖尿病诊断模型构建流程,结合了传统机器学习方法(KNN、SVM、随机森林)和自适应神经模糊推理系统(ANFIS)。通过对比分析不同模型在糖尿病数据集上的表现,为医疗诊断提供了一种有效的辅助决策方案。
环境准备
在开始项目前,需要安装以下必要的Python库:
!pip install scikit-learn pandas matplotlib joblib sanfis
这些库包含了数据处理、机器学习模型实现和可视化所需的工具。
数据预处理
数据加载与清洗
# 加载数据集
df = pd.read_csv("diabetes.csv")
# 处理缺失值(将0替换为列均值)
zero_fill_cols = ['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
for col in zero_fill_cols:
df[col] = df[col].replace(0, np.nan)
df[col] = df[col].fillna(df[col].mean())
# 去除异常值
df = df[(df['BMI'] <= 67) & (df['Insulin'] <= 846)]
特征选择与标准化
根据医学研究,我们选择了以下四个关键特征:
- 怀孕次数(Pregnancies)
- 葡萄糖浓度(Glucose)
- 身体质量指数(BMI)
- 糖尿病谱系功能(DiabetesPedigreeFunction)
features = ["Pregnancies", "Glucose", "BMI", "DiabetesPedigreeFunction"]
X = df[features].values
y = df["Outcome"].values
# 数据标准化
scaler = StandardScaler()
X_std = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
X_std, y, test_size=0.3, random_state=42, stratify=y
)
传统机器学习模型构建
K最近邻(KNN)模型
knn = KNeighborsClassifier(n_neighbors=7, weights='distance')
knn.fit(X_train, y_train)
joblib.dump(knn, "model/knn_model.pkl")
支持向量机(SVM)模型
svm = SVC(kernel='rbf', C=1, gamma='auto', probability=True, random_state=42)
svm.fit(X_train, y_train)
joblib.dump(svm, "model/svm_model.pkl")
随机森林(RF)模型
rf = RandomForestClassifier(n_estimators=150, max_depth=7, random_state=42)
rf.fit(X_train, y_train)
joblib.dump(rf, "model/rf_model.pkl")
自适应神经模糊推理系统(ANFIS)实现
ANFIS结合了神经网络的学习能力和模糊系统的推理能力,特别适合处理医学诊断这类模糊性问题。
# 定义隶属函数参数
MEMBFUNCS = [
{'function': 'gaussian', 'n_memb': 7,
'params': {'mu': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'sigma': {'value': [0.8]*7, 'trainable': True}}},
{'function': 'bell', 'n_memb': 7,
'params': {'c': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'a': {'value': [2.0]*7, 'trainable': False},
'b': {'value': [3.0]*7, 'trainable': False}}},
{'function': 'gaussian', 'n_memb': 7,
'params': {'mu': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'sigma': {'value': [0.8]*7, 'trainable': True}}},
{'function': 'sigmoid', 'n_memb': 7,
'params': {'c': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'gamma': {'value': [-3.0, -2.0, -1.0, 0, 1.0, 2.0, 3.0], 'trainable': True}}}
]
# 模型训练
model = SANFIS(membfuncs=MEMBFUNCS, n_input=4, scale='Std')
optimizer = torch.optim.AdamW(model.parameters(), lr=0.002)
loss_fn = torch.nn.MSELoss(reduction='mean')
history = model.fit(train_data=[X_train_torch, y_train_torch],
valid_data=[X_test_torch, y_test_torch],
optimizer=optimizer,
loss_function=loss_fn,
epochs=1000)
# 模型保存
torch.save(model.state_dict(), 'model/anfis_model.pt')
模型性能比较
我们对四种模型在测试集上的表现进行了全面评估,使用准确率(Accuracy)、F1分数和AUC三个指标:
| 模型 | 准确率 | F1分数 | AUC |
|---|---|---|---|
| KNN | 0.710 | 0.544 | 0.786 |
| SVM | 0.723 | 0.522 | 0.770 |
| RF | 0.745 | 0.593 | 0.815 |
| ANFIS | 0.758 | 0.606 | 0.827 |
从结果可以看出:
- ANFIS模型在所有指标上都表现最佳,特别是在AUC指标上达到0.827
- 随机森林作为传统机器学习方法中的最佳模型,表现接近ANFIS
- SVM虽然准确率略高于KNN,但在F1分数上表现最差
结论与建议
- 模型选择:对于糖尿病诊断这类医学问题,ANFIS因其能够处理模糊性和不确定性,表现出最佳性能
- 特征工程:BMI和葡萄糖浓度是最重要的两个预测指标,这与医学常识一致
- 实际应用:建议将ANFIS模型集成到医疗辅助诊断系统中,但需要结合医生的专业判断
- 改进方向:可以尝试增加更多临床特征,或结合深度学习模型进一步提升性能
本项目的完整实现展示了从数据预处理到模型构建、评估的全流程,为医疗AI应用提供了一个可复用的框架。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
299
暂无简介
Dart
710
170
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
181
67
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
React Native鸿蒙化仓库
JavaScript
284
332
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
430
130