基于Fuzzy_Diabetes项目的糖尿病诊断模型构建与比较
2025-06-19 22:10:58作者:盛欣凯Ernestine
项目概述
本项目实现了一个完整的糖尿病诊断模型构建流程,结合了传统机器学习方法(KNN、SVM、随机森林)和自适应神经模糊推理系统(ANFIS)。通过对比分析不同模型在糖尿病数据集上的表现,为医疗诊断提供了一种有效的辅助决策方案。
环境准备
在开始项目前,需要安装以下必要的Python库:
!pip install scikit-learn pandas matplotlib joblib sanfis
这些库包含了数据处理、机器学习模型实现和可视化所需的工具。
数据预处理
数据加载与清洗
# 加载数据集
df = pd.read_csv("diabetes.csv")
# 处理缺失值(将0替换为列均值)
zero_fill_cols = ['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
for col in zero_fill_cols:
df[col] = df[col].replace(0, np.nan)
df[col] = df[col].fillna(df[col].mean())
# 去除异常值
df = df[(df['BMI'] <= 67) & (df['Insulin'] <= 846)]
特征选择与标准化
根据医学研究,我们选择了以下四个关键特征:
- 怀孕次数(Pregnancies)
- 葡萄糖浓度(Glucose)
- 身体质量指数(BMI)
- 糖尿病谱系功能(DiabetesPedigreeFunction)
features = ["Pregnancies", "Glucose", "BMI", "DiabetesPedigreeFunction"]
X = df[features].values
y = df["Outcome"].values
# 数据标准化
scaler = StandardScaler()
X_std = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
X_std, y, test_size=0.3, random_state=42, stratify=y
)
传统机器学习模型构建
K最近邻(KNN)模型
knn = KNeighborsClassifier(n_neighbors=7, weights='distance')
knn.fit(X_train, y_train)
joblib.dump(knn, "model/knn_model.pkl")
支持向量机(SVM)模型
svm = SVC(kernel='rbf', C=1, gamma='auto', probability=True, random_state=42)
svm.fit(X_train, y_train)
joblib.dump(svm, "model/svm_model.pkl")
随机森林(RF)模型
rf = RandomForestClassifier(n_estimators=150, max_depth=7, random_state=42)
rf.fit(X_train, y_train)
joblib.dump(rf, "model/rf_model.pkl")
自适应神经模糊推理系统(ANFIS)实现
ANFIS结合了神经网络的学习能力和模糊系统的推理能力,特别适合处理医学诊断这类模糊性问题。
# 定义隶属函数参数
MEMBFUNCS = [
{'function': 'gaussian', 'n_memb': 7,
'params': {'mu': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'sigma': {'value': [0.8]*7, 'trainable': True}}},
{'function': 'bell', 'n_memb': 7,
'params': {'c': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'a': {'value': [2.0]*7, 'trainable': False},
'b': {'value': [3.0]*7, 'trainable': False}}},
{'function': 'gaussian', 'n_memb': 7,
'params': {'mu': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'sigma': {'value': [0.8]*7, 'trainable': True}}},
{'function': 'sigmoid', 'n_memb': 7,
'params': {'c': {'value': linspace(-1, 1, 7).tolist(), 'trainable': True},
'gamma': {'value': [-3.0, -2.0, -1.0, 0, 1.0, 2.0, 3.0], 'trainable': True}}}
]
# 模型训练
model = SANFIS(membfuncs=MEMBFUNCS, n_input=4, scale='Std')
optimizer = torch.optim.AdamW(model.parameters(), lr=0.002)
loss_fn = torch.nn.MSELoss(reduction='mean')
history = model.fit(train_data=[X_train_torch, y_train_torch],
valid_data=[X_test_torch, y_test_torch],
optimizer=optimizer,
loss_function=loss_fn,
epochs=1000)
# 模型保存
torch.save(model.state_dict(), 'model/anfis_model.pt')
模型性能比较
我们对四种模型在测试集上的表现进行了全面评估,使用准确率(Accuracy)、F1分数和AUC三个指标:
| 模型 | 准确率 | F1分数 | AUC |
|---|---|---|---|
| KNN | 0.710 | 0.544 | 0.786 |
| SVM | 0.723 | 0.522 | 0.770 |
| RF | 0.745 | 0.593 | 0.815 |
| ANFIS | 0.758 | 0.606 | 0.827 |
从结果可以看出:
- ANFIS模型在所有指标上都表现最佳,特别是在AUC指标上达到0.827
- 随机森林作为传统机器学习方法中的最佳模型,表现接近ANFIS
- SVM虽然准确率略高于KNN,但在F1分数上表现最差
结论与建议
- 模型选择:对于糖尿病诊断这类医学问题,ANFIS因其能够处理模糊性和不确定性,表现出最佳性能
- 特征工程:BMI和葡萄糖浓度是最重要的两个预测指标,这与医学常识一致
- 实际应用:建议将ANFIS模型集成到医疗辅助诊断系统中,但需要结合医生的专业判断
- 改进方向:可以尝试增加更多临床特征,或结合深度学习模型进一步提升性能
本项目的完整实现展示了从数据预处理到模型构建、评估的全流程,为医疗AI应用提供了一个可复用的框架。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.47 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
298
暂无简介
Dart
548
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
599
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
Ascend Extension for PyTorch
Python
88
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
125