OpenLibrary数据库空间不足问题分析与解决方案
问题背景
OpenLibrary生产环境中的两台数据库服务器ol-db1和ol-db2近期出现了存储空间严重不足的情况,可用空间已降至40GB以下(总容量为1TB)。这种情况如果持续恶化,可能导致数据库服务不可用,影响整个OpenLibrary平台的正常运行。
问题分析
通过检查发现,PostgreSQL数据库中多个核心表存在大量"死元组"(dead tuples)。死元组是指那些已被删除或更新但尚未被清理的数据记录,它们会占用存储空间但不再被使用。特别是以下几个表情况较为严重:
- store_index表:4300万死元组
- store表:150万死元组
- edition_str表:570万死元组
- thing表:280万死元组
- work_str表:100万死元组
这些死元组堆积的主要原因是PostgreSQL的自动清理(auto-vacuum)机制未能及时处理这些表。默认情况下,PostgreSQL会在表中有足够多的死元组时触发自动清理,但对于频繁更新的表,默认阈值可能不够敏感。
解决方案
立即措施
-
手动执行VACUUM ANALYZE:对问题严重的表执行了手动清理操作,回收内部空间:
VACUUM ANALYZE store_index; VACUUM ANALYZE store; VACUUM ANALYZE edition_str; VACUUM ANALYZE data; VACUUM ANALYZE thing; VACUUM ANALYZE work_str;
-
调整自动清理参数:针对store_index表调整了自动清理的触发阈值,使其更频繁地进行清理:
ALTER TABLE store_index SET ( autovacuum_vacuum_threshold = 500, autovacuum_vacuum_scale_factor = 0.01, autovacuum_analyze_threshold = 500, autovacuum_analyze_scale_factor = 0.005 );
-
扩容存储空间:为ol-db1和ol-db2服务器增加了200GB的存储空间,暂时缓解了空间压力。
长期解决方案
-
数据库升级计划:计划引入第三台数据库服务器ol-db3,实施PostgreSQL版本升级,改善整体数据库管理能力。
-
监控优化:建立更完善的数据库监控机制,特别是对死元组增长和存储空间使用的监控。
-
定期维护:制定定期的手动VACUUM计划,特别是对那些更新频繁的大型表。
技术细节说明
-
VACUUM ANALYZE:该命令会清理表中的死元组并更新统计信息,但不会将空间返还给操作系统(需要VACUUM FULL才能做到,但会锁表影响生产环境)。
-
自动清理参数:
- autovacuum_vacuum_threshold:触发VACUUM的死元组绝对数量阈值
- autovacuum_vacuum_scale_factor:触发VACUUM的死元组相对于表大小的比例
- 类似的analyze参数控制统计信息更新的频率
经验教训
-
对于高流量的生产数据库,默认的自动清理参数可能不够积极,需要根据实际负载情况进行调整。
-
存储空间监控应该设置更早的预警阈值,避免等到空间严重不足时才采取措施。
-
定期的手动维护是必要的,不能完全依赖自动清理机制。
这次事件提醒我们数据库维护工作的重要性,特别是在像OpenLibrary这样的大型知识库项目中,数据量会持续增长,需要建立完善的数据库管理策略。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0383- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









