Apache Sedona 中 GeoTIFF 栅格数据写入 HDFS 的问题分析与解决方案
2025-07-05 08:53:11作者:戚魁泉Nursing
问题背景
在使用 Apache Sedona 1.5.0/1.5.1 版本时,开发者尝试将 GeoTIFF 格式的栅格数据写入 HDFS 文件系统时遇到了一个异常现象。具体表现为:当使用 Spark SQL 的 binaryFile 格式读取 TIFF 文件后,尝试通过 Sedona 的 raster 格式写入 HDFS 时,目标目录中仅生成了一个 _SUCCESS 文件,而预期的 TIFF 文件并未出现。
问题现象详细描述
开发者通过以下代码尝试写入栅格数据:
var df = spark.read.format("binaryFile").load("/user/spark/raster/input.tif")
df.write.format("raster").mode(org.apache.spark.sql.SaveMode.Overwrite).save("output")
执行后,HDFS 目标目录中仅出现 _SUCCESS 文件,没有生成预期的 TIFF 文件。通过检查日志发现以下关键信息:
- HDFS 审计日志中显示文件创建操作,但没有后续的重命名操作
- 执行器日志中出现警告:"Expected 1 files, but only saw 0",表明输出格式可能没有正确写入文件
根本原因分析
经过深入排查,发现问题出在 RasterFileFormat.scala 文件的实现中。具体来说,在创建输出文件路径时,代码错误地使用了 Paths.get() 方法来拼接 HDFS 路径:
val out = hfs.create(new Path(Paths.get(savePath, new Path(rasterFilePath).getName).toString))
这种实现方式存在两个问题:
Paths.get()是 Java NIO 的 API,主要用于本地文件系统路径操作,不适合用于 HDFS 路径处理- 这种路径拼接方式可能导致路径格式不符合 HDFS 的预期
解决方案
正确的实现应该直接使用 Hadoop 的 Path 类进行路径拼接:
val out = hfs.create(new Path(savePath, new Path(rasterFilePath).getName))
这种修改确保了:
- 完全使用 Hadoop 生态的路径处理方式
- 路径格式符合 HDFS 的规范
- 避免了不同文件系统 API 混用可能带来的问题
技术深度解析
文件系统 API 的差异
Java 提供了多种文件系统操作 API:
java.nio.file.Paths:标准的 NIO API,主要用于本地文件系统org.apache.hadoop.fs.Path:Hadoop 提供的 API,专为分布式文件系统设计
在 Hadoop/Spark 生态中,处理 HDFS 路径时应始终使用后者,因为:
- 它正确处理了 HDFS 的 URI 格式
- 它考虑了分布式环境下的路径语义
- 它与 Hadoop 文件系统抽象完美集成
文件写入流程分析
Sedona 的栅格数据写入流程大致如下:
- 通过 Spark 的 DataFrame 接口接收二进制数据
- 使用 RasterFileFormat 进行格式转换
- 通过 Hadoop 文件系统 API 写入 HDFS
问题出现在第三步,当使用错误的路径拼接方式时,虽然文件创建操作被记录(出现在审计日志中),但由于路径格式问题,文件无法被正确提交和重命名,导致最终不可见。
最佳实践建议
- 路径处理一致性:在 Hadoop/Spark 生态中,始终使用
org.apache.hadoop.fs.Path进行路径操作 - 跨文件系统兼容性:如果需要支持多种文件系统,应通过 Hadoop 的文件系统抽象层进行处理
- 错误处理:在文件操作代码中加入适当的错误处理和日志记录
- 测试覆盖:增加对 HDFS 等分布式文件系统的测试用例
总结
这个案例展示了在分布式计算环境中正确处理文件路径的重要性。Apache Sedona 作为地理空间大数据处理框架,需要特别注意不同文件系统 API 的适用场景。通过修正路径处理逻辑,可以确保栅格数据能够正确写入 HDFS,满足地理空间大数据处理的需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258